

Lero Technical Report Lero-TR-2014-03

Research	Protocol	for	a	Case	Study	of	Crowdsourcing	
Software	Development	

	
Dr Klaas-Jan Stol
Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland

Prof Brian Fitzgerald
Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland

September 2014

Contact

Address .. Lero
The Tierney Building
University of Limerick
Ireland

Phone +353 61 233799
Fax +353 61 213036
E-Mail adminsh@lero.ie
Website .. http://www.lero.ie/

Lero Technical Report Number : TR_2014_03

Copyright 2015 Lero, University of Limerick

This work is partially supported by Science Foundation Ireland
under grant no. 10/CE/I1855

© 2014 Klaas-Jan Stol and Brian Fitzgerald Rev. 1.1

Lero Technical Report -TR_2014_03
Research Protocol for a Case Study of Crowdsourcing

Software Development
Klaas-Jan Stol

Lero—the Irish Software Engineering
Research Centre

University of Limerick, Ireland
klaas-jan.stol@lero.ie

Brian Fitzgerald
Lero—the Irish Software Engineering

Research Centre
University of Limerick, Ireland

bf@ul.ie

ABSTRACT
Crowdsourcing is an emerging topic within software engineering
research. This report presents the protocol for our case study of
crowdsourcing at a multi-national company. The findings of the
case study are presented in a paper in the proceedings of the 36th
International Conference on Software Engineering (2014) (see ref.
[37]). This protocol presents additional details that provide more
insight regarding the background, design and execution of our
study. The research design can also be used for replicating the
case study so as to be able to more easily compare different case
studies.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development, Software
process; D.2.8 [Software Engineering]: Management—
Programming teams; K.4.3 [Organizational Impacts]:
Computer-supported collaborative work

General Terms
Management, Human Factors, Theory

Keywords
Crowdsourcing software development, case study, protocol,
empirical study, epistemology, philosophical stance, research
tradition

1. INTRODUCTION
Crowdsourcing is gaining significant attention in the software
engineering research [4, 28]. Crowdsourcing has been suggested
as a useful approach in GUI testing [13], performance testing [28]
and even as a means to recruit participants in empirical studies of
software engineering [38]. There is an increasing level of attention
to social interactions and networks within software engineering
research [3], and ‘crowds’ are an important aspect of this [6]. We
are in particular concerned with using crowds as an alternative
form of sourcing, contrasting it with other forms such as open-
sourcing [1], inner-sourcing [35] and traditional software
outsourcing. In other words, how can a crowd, or ‘unknown
workforce’ effectively contribute to the development of a software
system?

Much research has focused on general-purpose crowdsourcing
platforms such as Amazon’s Mechanical Turk (AMT) [19].
However, very little research exists on crowdsourcing software
development, in contrast to the topic of crowdsourcing in a more
general sense. We argue that there is significant potential in soft-
ware development through crowdsourcing, but that much research
is needed to better understand how to optimally do this. This
report presents the study protocol for our case study on

crowdsourcing software development [37], and is structured as
follows. Section 2 presents the research goal and method used for
the study. Section 3 discusses the development of the theoretical
framework prior to the field-work for this study. A brief summary
of the framework is also presented. Section 4 discusses data
collection for the study. Section 5 discusses data analysis
methods, and also the process of reporting our study. Section 6
discusses validity issues of the study and how these were
mitigated. Section 7 briefly summarises this report.

2. RESEARCH GOAL AND METHOD
The goal of our study was to investigate crowdsourcing in a
software development context from a crowd-sourcing customer
perspective, to better understand this process and the challenges
associated with it.
Since crowdsourcing in the context of software development is an
emerging topic with very little in-depth research, we decided to
conduct an industry case study. In a crowdsourcing scenario, there
are three distinct stakeholders – the crowdsourcing customer, the
crowdsourcing workers and the crowdsourcing platform provider.
While there have been a small number of studies focusing on
crowdsourcing platforms and crowdsourcing workers, to our
knowledge there have been no studies to date of crowdsourcing
software development from a customer perspective.

Case study research is a highly appropriate method to explore
contemporary phenomena within a real-world setting, where it is
difficult to draw clear boundaries between the subject of study and
the context within which it takes place [42]. Furthermore, case
study research is very useful to answer “how” and “why”
questions. Given that we were interested in achieving an
understanding of how crowdsourcing software development works
in practice, we deemed case study method an appropriate choice.

Other common research methods in software engineering are
surveys and controlled experiments, both of which offer a number
of benefits over case study research. Surveys, for instance tend to
result in findings that have a higher degree of generalizability,
whereas controlled experiments offer the ability to quantitatively
study relationships (e.g., causal) between different constructs
relating to, for instance, project success. However, given that the
state of research on crowdsourcing software development is still
in its nascent phase (i.e. no body of published literature on
organizations that use crowdsourcing as a strategy for software
development, limiting the opportunity to conduct field surveys),
we chose to conduct an industry case study.
The case study method has a number of design options:

• Single versus multiple;

• Embedded versus holistic;
Our case study was designed as a holistic, single-case study. By
adding additional case studies at different organizations (for
which this protocol could offer guidance), our study could be
extended to a multiple-case study, facilitating a comparative
analysis between the results of the different cases. This is one
direction for future work.

Furthermore, our case study was holistic as opposed to embedded.
This means that the case was the unit of analysis; in an embedded
case study design, a case could contain different units of analysis.

Another characterization of case studies that can be made is
whether they are [30]:

• Descriptive – portray the current status of a situation or
a certain phenomenon;

• Exploratory – seek new insights; generate ideas and
hypotheses for further research;

• Explanatory – seeking to explain a situation, possibly
by identifying causal relationships between constructs;

• Improving – attempting to improve a certain aspect of a
studied topic or phenomenon.

We position our case study as exploratory, as it sought to
generate new insights. This is different from descriptive case
studies, which tend to be used to illustrate certain events and their
specific context.
One consideration in case study design is the ontological and
epistemological stance that researchers take. These stances relate
to what a researcher considers to be ‘knowledge,’ and how that
knowledge should be acquired. The debate on epistemology has
been particularly strong in the information systems (IS) field [15],
but has hardly attracted any interest from software engineering
(SE) researchers, and mostly left implicit. The philosophical basis
underpinning of an empirical study affects the assumptions made
in a study as well as how a study is designed. A lack of
understanding of the assumptions underpinning a study design
may therefore limit a reader’s appreciation of the study’s findings.
This tension can arise from a fundamental mismatch between the
assumptions of a researcher conducting the work on the one hand,
and readers who have a different set of assumptions regarding the
nature of knowledge. While there a variety of epistemological
stances, we illustrate this with the two stances best known, namely
positivism and interpretivism. Some assumptions of positivist
researchers are [15]:

• There is a single objective truth that can be discovered
independent of an individual’s cognition;

• Complexity can be resolved by reductionism;
• Focus on quantification and measurement.

On the other hand, some assumptions of the interpretivist stance
are:

• Multiple realities exist as subjective constructions of the
mind;

• A study’s findings emerge from interaction between a
researcher and a research situation;

• Focus on “thick descriptions” to incorporate natural
context.

These different beliefs about what constitutes “knowledge” will
influence a researcher’s choice of research methods (e.g., data
collection). Furthermore, they also affect a reader’s evaluation
criteria and expectations of a research report. A positivist reader
expecting a controlled experiment that measures a number of

constructs (representing a simplified yet “valid” view of the real-
world) in order to identify a causal relationship, is likely to be
disappointed when confronted with an interpretivist study that
presents ‘thick’ descriptions of a certain phenomenon in which no
causal relationship is identified nor tested.

The debate is often characterized (and oversimplified) as being
‘hard’ versus ‘soft,’ with the positivist stance representing the
former, and interpretivism representing the latter. Positivist
research could roughly be characterized as being quantitative,
based on reductionism, constructs, propositions and hypotheses,
whereas interpretivist research depends on “thick descriptions,”
multiple world views using qualitative methods. The software
engineering research community has increasingly adopted
qualitative approaches in the last 15 years or so, but there has so
far been no consideration of the epistemological underpinnings
that are usually associated with such qualitative approaches.
Consequently, qualitative studies may still be criticized for
“lacking control” for example, while interpretivist researchers
may not necessarily aim at “generating truth” but rather at making
interpretations “available in the ‘consultable record’ ” [41].

There are numerous reference works on case study methodology,
and there are different types of case study research. Yin [42], for
instance, takes an implicit positivist stance and consequently his
discussion of case study research features activities that are
typically found in the positivist school. For example, his guidance
includes the development of propositions, a recommendation that
has been echoed by software engineering researchers as well [40].
Other hints include the use of terms such as “internal validity,”
“external validity,” and “reliability,” terms which make sense in
quantitative studies where a model or theory is constructed and
hypotheses are tested. In studies of a more qualitative nature,
however, these terms are not necessarily applicable. For instance,
whereas in a positivist research philosophy there is much attention
for identifying causal relationships between constructs, the goal of
qualitative studies is often to gain an understanding, rather than
testing a hypothesis. Thus, the term “internal validity” has little
meaning in qualitative studies.
Besides this postivist approach to conducting case studies, there is
also an interpretivist approach. Walsham discusses how case
studies in the information systems (IS) field can be conducted in
the interpretivist philosophy [41].

A common concern about case study methodology is a “lack of
control” as would be present in, for instance, controlled
experiments (as the term implies). However, the goal of case
studies is not to manipulate, or control behavior [42]; in fact,
given that the boundaries between the phenomenon being studied
and the context in which that phenomenon is embedded are “not
clearly evident” [42].

Braa and Vidgen identified three research outcomes, namely that
of prediction, understanding and change [7]. The desired
research outcome will therefore dictate the choice of the research
strategy and method. For instance, when the targeted research
outcome is the ability to make a confident prediction, one would
choose a controlled experiment where relationships between a
number of constructs (which together represent a reductionist
view of the real world) are studied. If, on the other hand, the goal
is to make a change, one would be wiser to adopt the action
research method. The aim of our study was to gain an
understanding of crowdsourcing software development, and thus
we adopted, what Braa and Vidgen called a “soft” case approach.
These three research outcomes together represent a framework to
position different research methods – as shown in Figure 1.

Figure 1. Research outcomes and research methods. Adapted
from Braa and Vidgen [7].

The framework proposed by Braa and Vidgen represents one view
of how research methods are linked to research goals—numerous
other classifications of research methods have been proposed (see
for example Runkel and McGrath’s discussion on this topic [31]).
They consider techniques such as surveys and interviews to be
orthogonal to the methods in the figure. For instance, surveys
could be designed with an aim to achieve statistical
generalizability (i.e., a high degree of external validity), and as
such they would fall within the reductionist/prediction corner of
the figure. Alternatively, surveys that collect qualitative data that
are subsequently analyzed using qualitative analysis techniques
(as opposed to quantitative/statistical techniques) fit better in the
interpretivist/understanding corner of the figure.

3. THEORETICAL FRAMEWORK
Prior to the field work we conducted a comprehensive literature
review to identify key topics that have received attention within
the crowdsourcing literature. Together these topics form a
framework, which established the boundaries of our study [33].

3.1 Development of the Framework
Our first step in developing an understanding of the
crowdsourcing phenomenon was the study of some of the seminal
works in this area [8, 17, 18]. This established a common
vocabulary and understanding among the researchers about the
concept of crowdsourcing.

Our literature review was a traditional one, as opposed to a
systematic literature review (SLR), which has become a common
approach in software engineering research. SLRs have a number
of associated benefits, such as repeatability and the ability to be
more exhaustive than traditional reviews. Consequently, SLRs are
suitable for conducting extensive surveys of a research field and
to develop a taxonomy, for instance. However, the goal of our
literature review was not to develop such a taxonomy that
captures the whole crowdsourcing research field, nor was our goal
to identify as many studies as possible, as would be desirable
when reviewing empirical studies so as to synthesize all the
evidence pertaining to a certain research question. Rather, given
the exploratory goal of our study, we sought to identify a set of
key concerns that would be important considerations given the

nature of the crowdsourcing phenomenon, and which would be of
particular importance in a software engineering context.

The literature review thus started with a number of searches in
search engines and digital libraries (Google Scholar, IEEE Xplore,
ACM Digital Library). Through an iterative approach we
identified a set of papers which grew to a collection of 160 papers.
Based on an analysis of the papers’ titles and abstracts, we
identified a number of candidate topics that we deemed of interest.
We then read a number of papers in each category in more detail
to capture some of the key insights that were presented. As we
became increasingly immersed in the crowdsourcing literature, we
reflected on whether the themes were (a) relevant to software
engineering, (b) how parsimonious they were, and (c) whether
they represented a sufficiently complete set of topics that were
relevant to our study. We revisited our initial choice of themes
making a few small changes to finalize our framework (e.g., the
theme of “intellectual property” now includes the topic of
“knowledge”).

3.2 Key Concerns in Crowdsourcing Software
Development
Our theoretical framework consists of six themes, which are
described in detail in [37]. A brief description of each theme
follows in sections 3.1.1 to 3.1.6.

3.2.1 Task decomposition
Development of a significant software systems cannot be done by
a single person in a crowd. In order to benefit from a potentially
large crowd, the system should be split up into many small pieces
that can be developed in parallel by different developers in the
crowd. This raises an age-old question in software engineering,
namely, how should the system be decomposed into smaller
modules without causing problems in putting them back together
once they are developed [20, 21, 22]. Common questions in
software engineering within the scope of decomposition relate to
assumptions, interfaces and dependencies. While dependencies
are an important consideration in decomposing a system,
managing these dependencies through coordination and
communication is part of a second theme, discussed next.

3.2.2 Coordination and Communication
While task decomposition is mainly concerned with the question
of how to decompose a system to be developed into manageable
chunks of work, coordination is concerned with the process of
managing the dependencies between these activities [26].
Coordination is important to ensure that activities are performed
in a timely fashion and that together they achieve the ultimate goal
of building a system. To achieve this, communication is needed
between the developers and the customer.

3.2.3 Planning and Scheduling
With crowdsourcing, timely delivery of software implementations
becomes much more uncertain than when development is done in-
house, or in ‘normal’ outsourcing scenarios where delivery is
subject to a negotiated contract. One potential benefit of
crowdsourcing is a quicker delivery as the work can be split up in
smaller tasks which can then be executed in parallel. On the other
hand, given that crowdsourcing competitions cannot really be
expedited once the deadline is set, it is not possible to intervene to
achieve faster delivery. Therefore, important questions in
crowdsourcing software development are related to how a timely
delivery of a software project can be guaranteed when portions are
crowdsourced to an unknown workforce.

Interventionist/
Change

Interpretivist/
Understanding

Reductionist/
Prediction

action
research

hard
case

field
experiment

soft
case

quasi-
experiment action

case

3.2.4 Quality Assurance
Some crowdsourcing advocates claim that, given a large number
of submissions (from a large enough crowd), the resulting output
will be of high quality [5, 32], thus addressing a key concern in
software engineering. Also, similar to Linus’s Law, namely that
given a sufficiently large group of people, there is bound to be
someone who knows how to fix a certain defect, a similar line of
thinking would argue that there is a wide variety of expertise
available in the crowd. In other words, whatever the software
development task at hand, there is bound to be someone who has
sufficient domain expertise to provide a solution to a given
software development task.

3.2.5 Knowledge and Intellectual Property
Software development is a knowledge-intensive task, and
knowledge sharing and management plays an important part
throughout the software development lifecycle [2]. A key
difference between in-house development and traditional
outsourcing scenarios on the one hand, and crowdsourcing on the
other hand is that the latter is characterized by a possibly
continuous turnover of workers [11].

3.2.6 Motivation and Remuneration
Motivation and remuneration are topics that have received
significant attention in the crowdsourcing literature [9, 12, 14, 16].
Crowdsourcing tasks on platforms such as Amazon’s Mechanical
Turk, sometimes referred to as ‘micro-tasks,’ tend to be very short
in duration, and only a small remuneration is offered for those,
usually less than one US dollar [19]. As software development
tasks are much more complex, one can no longer speak of micro-
tasks as they tend to be interdependent, long in duration
(days/weeks as opposed to seconds/minutes), and requiring a great
deal of cognitive effort. Therefore, remuneration for such complex
tasks must be significantly higher than micro-tasks. An important
consideration for a crowdsourcing customer is to decide on an
appropriate remuneration that will attract sufficient participants to
a crowdsourcing contest. Furthermore, participants who have a lot
of experience with crowdsourcing may have a significant
advantage over those who are inexperienced, in that they may be
more proficient with a platform, and thus may be more likely to
win a crowdsourcing contest. Whether or not this puts off
inexperienced participants, to the extent of ‘scaring them away’
would be a concern for a crowdsourcing customer as this reduces
participation and may affect the number of solutions offered.

4. DATA COLLECTION
This section presents the data collection techniques we applied,
namely interviews and documentation study. For the interviews,
we purposive selected key informants that would be able to
provide us with useful information.

Lethbridge et al. present a taxonomy of data collection methods
for field studies in software engineering research, and
distinguished three levels of engagement [25]. These ‘first,’
‘second,’ and ‘third’ degree types of data collection methods are
categorized according to the degree of human contact that is
required. These three degrees of interaction are:

• First degree: requires direct access to a participant
population; e.g. interviews.

• Second degree: requires access to participants’
environment but no direct access to participants
themselves is necessary; e.g., observation.

• Third degree: requires access to work artifacts only,
e.g. source code and documentation; e.g., document
analysis.

We applied methods of the first degree and third degree. In
particular, we conducted a number of semi-structured interviews
(first degree), and we studied documentation available from the
case company as well as data that were available from the
crowdsourcing platform that the case study was using (third
degree). We discuss data collection through interviews and
documentation study in order due to the inherent linear structure
of this report. However, the two modes of data collection
happened in parallel, in an alternating fashion.

4.1 Interviews
4.1.1 Interview Design
Prior to conducting the field study, i.e., interviews, we developed
an interview guide based on the framework identified in Section 3.
Furthermore, we also received a short report from the case
company that outlined a short description of the crowdsourced
project as well as names of a number of the key persons involved
(see also Section 4.2). The interview guide was used primarily for
the first round of interviews. After analysis of the initial
interviews (see also Section 5) we identified further questions to
clarify details that had not become clear initially, or to validate
some of our assumptions. Subsequent interview sessions helped in
answering any outstanding questions.

4.1.2 Selection of Participants
The choice of selection of participants is an important decision in
the design of a research study. In selecting participants we applied
the principle of purposive sampling, where it is more important to
include informants who are closely involved who can offer rich
insights, rather than to necessarily identify a certain number of
participants.
Participants were selected based on their level of involvement
with the crowdsourcing initiative at the case company. We
conducted interviews with the following participants:

• Divisional CTO
• Software architect
• Software development manager
• Program manager
• Project manager

4.1.3 Execution of the Interviews
Prior to these visits one of the involved researchers had an
exploratory discussion with the divisional CTO so as to set the
goal and scope of the research. We conducted the interviews on
site during three company visits and two teleconference calls. In
total, we spoke to five people. The on-site interviews were
conducted in three half-day workshops, and resulted in seven
hours of interviews that were transcribed for further analysis.
The extensive time period of eight months allowed us to analyze
the data during data collection. While this does not constitute a
longitudinal case study whereby there is a monitoring of events
and trends over a significant amount of time or a larger number of
data collections, we do consider eight months to be sufficient for
establishing an in-depth analysis of the case at hand. As soon as
interviews were transcribed they could be analyzed. Through an
iterative process of data collection and analysis, we could focus
our follow-up questions very specifically on issues that we were
not yet clear about.

4.2 Supporting Documentation
In addition to the semi-structured interviews, we also gathered
data through study of documentation that was available.
Specifically, the case company had written a short report with a

number of problems they were facing, as well as a brief
description of the project and key persons that were involved. This
document was used to identify the informants for the interviews.
This report also helped us in gaining an understanding of the
domain that the company were working in, so as to get a grasp of
the terminology, which would help in conducting the interviews.
Furthermore, we inspected the specification documents for the
various crowdsourcing contests. This form of data source
triangulation permitted us to cross-check facts, figures and
findings; this is a general recommendation to establish a study’s
dependability.

5. DATA ANALYSIS AND REPORTING
The collected data were analyzed using qualitative techniques
described by Seaman [34]. All interviews were transcribed,
resulting in approximately 112 pages of text (A4 format, 10 points
font, single line-spacing). The analysis consisted of coding the
transcripts using the six themes of our framework (see Section 3)
as seed categories. The transcripts were analyzed in parallel by
both authors and several analytical memos were written. The
memos established an audit trail of the analysis, and facilitated a
process of peer debriefing for the researchers.

Of key importance is that the analysis results in findings that
correctly reflect the insights and opinions of the participants. In
order to address this we applied the tactic of member checking.
We sent several drafts of our paper to the interviewees so as to
ensure that our report correctly reflected the participants’ intended
answers and insights.

6. VALIDITY OF THE STUDY
All research studies are limited in one or more aspects and have
associated threats to validity. Our study is no exception. In this
section we discuss the validity, or trustworthiness, of our study.
While a number of tactics and elements in our study design (e.g.,
member checking, audit trail) were already presented as part of
the study protocol (see Sections 4 and 5), we will briefly reiterate
these practices as part of our discussion of the validity issues
below.

A standard set of of validity criteria are internal validity, external
validity, reliability and objectivity. Given that we collected mostly
qualitative data we felt it was more appropriate to use an
alternative set of validity criteria that are more suitable to consider
these issues for such a qualitative study. We have previously used
these criteria in a multiple-case study of inner-sourcing, a topic
somewhat related to crowdsourcing [35]. These alternative criteria
are credibility, transferability, dependability and confirmability.
These are discussed below.

6.1 Credibility
Credibility is concerned with the extent to which we can have
confidence in the findings, answering the question: How plausible
are the findings? This question can be posed with respect to the
two components of our study, namely the framework development
and the empirical study.
Regarding the framework development, we should consider the
question as to how our research design established the credibility
of our framework comprising six key concerns (see Section 3). As
we outlined in Section 3, these concerns were identified through a
literature review following a process that should be characterized
as “traditional,” as opposed to a “systematic” literature review.
Our literature review considered a significant number of papers,
which gave us confidence that we had identified the key issues
that are important in crowdsourcing software development.
Furthermore, through a process of peer-debriefing, we discussed

these six concerns extensively. Indeed, as the original set of
concerns was discussed and one of us posited some additional
concerns as being important, the other researcher played ‘devil’s
advocate’ by critically gauging their importance [10]. Thus, we
argue that the final set of key concerns came from a sufficiently
rigorous process of reviewing the literature and deliberation
among the two researchers involved.

With respect to the credibility of the empirical study, we wish to
cite Leininger, who wrote that “crediblity refers to the truth as
known, experienced, or deeply felt by the people being studied
(emic or local) and interpreted from the findings with co-
participant evidence as the ‘real world,’ or the truth in reality”
[24]. One recommended approach to ensure that findings are
indeed “experienced” or “felt by” the participants of a study is to
adopt a tactic of member checking. We sent several preliminary
versions of our study report to the interviewees to solicit feedback.
This resulted in further clarifications that we subsequently
incorporated into our report.

6.2 Transferability
Transferability refers to the extent to which findings of a study
can be applied in other settings. This answers the question: To
what extent are our findings relevant in other cases of
crowdsourcing?
Clearly, our case study was a singular one, and no statistical
generalizations can be drawn from this. However, other forms of
generalizations exist [23]. Walsham identifies a set of four
alternative types of generalization [41]:

1. Development of concepts
2. Generation of theory
3. Drawing of specific implications
4. Contribution of rich insights

Each of these types of generalizations are present in our study.
Firstly, we developed a number of concepts, namely our
theoretical framework that consists of six key concerns in
crowdsourcing software development. These concepts will be
concerns for any customer who will be crowdsourcing software
development.

Secondly, while our study does not result in a fully developed
theory, we do set forth some propositions—a theory fragment
[36]. For instance, we found that crowdsourcing software
development is more useful in self-contained and independent
tasks, as opposed to complex software components that exhibit a
high degree of interdependencies.

Additionally, we were able to draw a number of specific
implications. For instance, our findings suggest that the
development process followed by the crowdsourcing platform is
inherently a waterfall one. The immediate implication of this is
that the company will encounter challenges when trying to
synchronize this with their agile development process.

Furthermore, through “thick” descriptions our study contributes
rich insights that can be useful to researchers who are studying
crowdsourcing software development, as well as customers who
may plan to embark on a crowdsourcing initiative.

The main purpose of our case study was to present an in-depth
investigation of how crowdsourcing software development is
done. The selection of the case study organization is based on
purposive sampling [29], i.e., the selection is based on a
researcher’s judgment as to the suitability of a participant (in this
case, an organization).

In case studies it is important to present sufficient context to
understand an organization’s constraints and behavior. To enable
readers to gauge the extent to which findings could be useful in
other contexts, we aimed at presenting “thick” descriptions, whose
purpose is to “create verisimilitude, statements that produce for
the readers the feeling that they have experienced, or could
experience, the events being described in a study” [10].

6.3 Dependability
Dependability refers to the extent to which the data are “stable,”
and addresses the issue of how reliable the findings are, and
whether any variance in those findings can be traced and
explained. In short: to what extent can a researcher depend on the
correctness of his or her findings?

We applied a number of common tactics to establish
dependability. Firstly, we triangulated across different data
sources: (i) we conducted a number of in-depth interviews with
key informants; (ii) we studied documentation that was provided
by the company (including details of the contests that were run on
TopCoder) (iii) we retrieved data from the TopCoder platform
(using the contest details mentioned above). Through this form of
triangulation, we were able to confirm findings, or where issues
remained unclear we requested clarification in further interviews.

Another tactic is that of establishing an audit trail. In our study,
this trail consists of the original source material of the interviews,
transcriptions, memos and spreadsheets used during analysis, and
the final paper that presents the results. The audit trail helps to
establish dependability, as it allows “another investigator to
follow the cognitive development of a project as it developed” [27,
p.24]. Thus, as we both were involved in this research progressed
in independent data analysis, we were able to follow each other’s
cognitive processes and confirm that any interpretations and
presentation of the results were in agreement.

6.4 Confirmability
A study’s confirmability considers the neutrality aspect of a study,
i.e., can findings be confirmed by others. Different investigators,
and indeed, participants, may have different experiences or
impressions in a study. These ‘multiple realities’ [39] may diverge
as a result of, for instance, a researcher’s subjective understanding
of the topic under study. The attitudes of the participants involved
in a study may also have an impact.

To address this concern, we employed member-checking (as
mentioned above) by sending preliminary versions of our report to
the informants of our study. This helps in assessing the extent to
which we correctly captured the informants’ insights and
experiences. Furthermore, the triangulation of data sources
(interviews, document study, contest data from the crowdsourcing
platform), and triangulation of investigators (i.e., two researchers
involved) are also recommended practices to establish a study’s
confirmability. Peer-debriefing, which we used in establishing the
credibility of our framework, was also used in the empirical phase
of our case study—the two researchers discussed the findings at
great length, both in face-to-face meetings and in analytical
memos that were exchanged.

7. SUMMARY
In this document we presented a protocol for conducting case
studies on crowdsourcing software development. Developing a
protocol prior to conducting data collection in the field is a
recommended approach in case study research, as it helps to
establish a focus of the topic under study as well as a vehicle to
reach agreement among researchers. Furthermore, by making the
protocol available, readers who are interested in the research

methodology used for a particular study can inspect this protocol
so as to become confident that a sound and rigorous approach was
used. Additionally, given the nascent state of research on
crowdsourcing software development, other researchers can use
and/or adapt this protocol to use in future and/or replication
studies.

8. ACKNOWLEDGMENTS
We are grateful to the participants in our study for their time and
insights. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero—the Irish Software
Engineering Research Centre (www.lero.ie).

9. CHANGE LOG
• V1.0 – First complete draft.
• V1.1 – removed dangling reference. Completed a reference.

10. REFERENCES
[1] Ågerfalk, P.J. and Fitzgerald, B. 2008. Outsourcing to an

unknown worforce: Exploring opensourcing as a global
sourcing strategy, MIS Quarterly, 32, 2.

[2] Aurum, A., Jeffery, R., Wohlin, C. and Handzic, M. 2003.
Managing Software Engineering Knowledge, Springer.

[3] Begel, A., Bosch, J. and Storey, M.A. 2013. Social
Networking Meets Software Development: Perspectives
from GitHub, MSDN, Stack Exchange, and TopCoder, IEEE
Software, 30, 1.

[4] Begel, A., Herbsleb, J.D. and Storey, M.-A. 2012. The
Future of Collaborative Software Development. Proc.
Computer Supported Cooperative Work.

[5] Bonabeau, E. 2009. Decisions 2.0: The Power of Collective
Intelligence, MIT Sloan Manage Rev, 50, 2, 45-52.

[6] Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M. and Vesci,
G. 2013. Choosing the right crowd: Expert finding in social
networks. EDBT/ICDT.

[7] Braa, K. and Vidgen, R.T. 1999. Interpretation, intervention
and reduction in the organizational laboratory: a framework
for in-context information systems research, Information and
Organization, 9, 1, 25-47.

[8] Brabham, D.C. 2013. Crowdsourcing, MIT Press.
[9] Chandler, D. and Kapelner, A. 2013. Breaking monotony

with meaning: Motivation in crowdsourcing markets,
Journal of Economic Behavior & Organization, 90, 123-133.

[10] Creswell, J.W. and Miller, D.L. 2000. Determining Validity
in Qualitative Inquiry, Theory into Practice, 39, 3, 124130.

[11] Dabbish, L., Farzan, R., Kraut, R. and Postmes, T. 2012.
Fresh Faces in the Crowd: Turnover, Identity, and
Commitment in Online Groups. Proc. CSCW. ACM.

[12] DiPalantino, D. and Vojnovic, M. 2009. Crowdsourcing and
all-pay auctions. Proc. 10th ACM Conf. Electronic
Commerce.

[13] Dolstra, E., Vliegendhart, R. and Pouwelse, J. 2013.
Crowdsourcing gui tests. 6th International Conference on
Software Testing, Verification and Validation.

[14] Faridani, S., Hartmann, B. and Ipeirotis, P.G. 2011. What's
the Right Price? Pricing Tasks for Finishing on Time. Proc.
AAAI Workshop on Human Computation.

[15] Fitzgerald, B. and Howcroft, D. 1998. Towards dissolution
of the IS research debate: from polarization to polarity,
Journal of Information Technology, 13, 313-326.

[16] Horton, J.J. and Chilton, L.B. 2010. The Labor Economics of
Paid Crowdsourcing. Proc. Conf. Electronic Commerce.

[17] Howe, J. 2006. The Rise of Crowdsourcing, Wired, 14.

[18] Howe, J. 2008. Crowdsourcing: Why the Power of the Crowd
Is Driving the Future of Business, Crown Business.

[19] Ipeirotis, P.G. 2010. Analyzing the Amazon Mechanical
Turk marketplace, XRDS, 17, 2, 16-21.

[20] Ipeirotis, P.G. and Paritosh, P.K. 2011. Managing
Crowdsourced Human Computation. WWW.

[21] Kittur, A., Smus, B., Khamkar, S. and Kraut, R.E. 2011.
CrowdForge: Crowdsourcing Complex Work. Proc. ACM
Symposium on User Interface Software and Technology.

[22] Kulkarni, A., Can, M. and Hartmann, B. 2012.
Collaboratively Crowdsourcing Workflows with Turkomatic.
Proc. Computer-Supported Cooperative Work.

[23] Lee, A.S. and Baskerville, R.L. 2003. Generalizing
Generalizability in Information Systems Research,
Information Systems Research, 14, 3, 221-243.

[24] Leininger, M. 1994. Criteria and Critique, in: J.M. Morse
(Ed.) Critical Issues in Qualitative Research Methods, SAGE
Publications.

[25] Lethbridge, T.C., Sim, S.E. and Singer, J. Studying Software
Engineers: Data Collection Techniques for Software Field
Studies, Empirical Software Engineering, 10, 311-341.

[26] Malone, T.W. and Crowston, K. 1994. The Interdisciplinary
Study of Coordination, ACM Comput Surv, 26, 1.

[27] Morse, J.M. 1994. "Emerging From the Data": The Cognitive
Processes of Analysis in Qualitative Inquiry, in: J.M. Morse
(Ed.) Critical Issues in Qualitative Research Methods, SAGE
Publications.

[28] Musson, R., Richards, J., Fisher, D., Bird, C., Bussone, B.
and Ganguly, S. 2013. Leveraging the crowd: how 48,000
users helped improve Lync performance, IEEE Softw., 30, 4.

[29] Robson, C. 2002. Real World Research, 2nd ed., Blackwell
Publishers.

[30] Runeson, P., Höst, M., Rainer, A. and Regnell, B. 2012.
Case Study Research in Software Engineering: Guidelines
and Examples, Wiley.

[31] Runkel, P.J. and McGrath, J.E. 1972. Research on Human
Behavior: A Systematic Guide to Method, Holt, Rinehart &
Winston, New York.

[32] Schenk, E. and Guittard, C. 2009. Crowdsourcing: What can
be outsourced to the crowd, and why?

[33] Schwarz, A., Mehta, M., Johnson, N. and Chin, W.W. 2007.
Understanding Frameworks and Reviews: A Commentary to
Assist us in Moving Our Field Forward by Analyzing Our
Past, Database Adv Inform Syst, 38, 3.

[34] Seaman, C. 1999. Qualitative Methods in Empirical Studies
of Software Engineering, IEEE Trans Softw Eng, 24, 4.

[35] Stol, K., Avgeriou, P., Babar, M.A., Lucas, Y. and
Fitzgerald, B. 2014. Key Factors for Adopting Inner Source,
ACM Transactions on Software Engineering and
Methodology, 23, 2.

[36] Stol, K. and Fitzgerald, B. 2013. Uncovering Theories in
Software Engineering. 2nd SEMAT Workshop on a General
Theory of Software Engineering. IEEE.

[37] Stol, K. and Fitzgerald, B. 2014. Two's Company, Three's a
Crowd: A Case Study of Crowdsourcing Software
Development. 36th International Conference on Software
Engineering (ICSE). ACM.

[38] Stolee, K.T. and Elbaum, S. 2010. Exploring the use of
crowdsourcing to support empirical studies in software
engineering. ESEM.

[39] Swanson, J.M. and Chapman, L. 1994. Inside the Black Box:
Theoretical and Methodological Issues in Conducting
Evaluation Research Using a Qualitative Approach, in: J.M.
Morse (Ed.) Critical Issues in Qualitative Research Methods,
SAGE Publications.

[40] Verner, J.M., Sampson, J., Tosic, V., Abu Bakar, N.A. and
Kitchenham, B.A. 2009. Guidelines for Industrially-Based
Multiple Case Studies in Software Engineering. Third
International Conference on Research Challenges in
Information Science.

[41] Walsham, G. 1995. Interpretive case studies in IS research:
nature and method, European Journal of Information
Systems, 4, 74-81.

[42] Yin, R.K. 2003. Case Study Research, 3rd ed., SAGE.

	TR Cover 2014-03
	2014 Research Protocol for a Case Study of Crowdsourcing Software Development

