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Abstract—Mobile devices are an increasingly common part of 

everyday life. These devices gather and manipulate personal 

information from and about their users, raising substantial 

privacy concerns. Frequent changes in the context of use of 

such devices can blur the boundary between users’ public and 

personal spaces, adding further uncertainty to these concerns. 

In particular, changing privacy threats can make it difficult for 

users to adapt their mobile applications to continue to satisfy 

their privacy requirements, and some degree of automated 

self-adaptation is essential. There has been little engineering 

work on studying the impact of a changing context on the de-

sign of privacy critical systems. In this paper, we propose a 

novel approach for software engineering of adaptive privacy in 

mobile applications. We view privacy threats as the inappro-

priate disclosure of personally identifiable information. Our 

approach uses privacy policies, and associated domain and 

software behavioural models, to logically reason over the con-

texts that threaten privacy. We generate possible mitigation 

actions, such as ignoring, preventing, reacting, and terminating 

interactions that threaten privacy. We implement and evaluate 

our approach in a prototype tool called Caprice. We demon-

strate that our approach is computationally feasible, and ena-

bles designers to identify plausible privacy threats and to select 

effective mitigation actions.  

Keywords-privacy; adaptation; mobility; selective disclosure; 

I. INTRODUCTION 

Consumers and enterprises increasingly rely on mobile sys-
tems, such as smart phones, to satisfy their social and busi-
ness needs. This new generation of systems enable users to 
form localised, short- and long-lived groups or communities 
to achieve common objectives. To this end, these systems 
may need to manipulate user’s sensitive information [5], 
such as location, time, proximity to nearby services, and 
connectivity to other users. The disclosure of these attributes 
in an unregulated way can threaten user privacy [6]. For this 
reason, privacy requirements of users are a critical concern 
for mobile systems. A representative class of such require-
ments is selective disclosure – deciding what information to 
disclose, in which context, and the degree of control an indi-
vidual has over disclosed information. 

A key factor affecting selective disclosure in a mobile 
environment is the frequently changing context, such as 
changing time, location and activities. These changes blur 
the boundary between public and personal spaces [1] [2] and 
can introduce unexpected privacy threats. Additionally, users 
may be unaware of when and for what purpose sensitive 

information about them is being collected, analysed or dis-
seminated. This makes it even more difficult for users to 
adapt their mobile applications to continue to satisfy their 
privacy requirements.  

This challenge calls for a more systematic approach to 
enable the explicit consideration of privacy in the engineer-
ing of mobile software systems. Firstly, it is necessary to 
continuously examine context changes, such as changing 
spatio-temporal user attributes, as well as the environmental 
or regulatory constraints over which such attributes are dis-
closed. Secondly, mobile systems should be able to reason 
over changing context to discover privacy threats, and sub-
sequently carryout actions that mitigate these threats. Alt-
hough there are some methods for addressing privacy at de-
sign time [7] (e.g PriS[11], SQUARE for privacy[12], and 
others [7]), they do not target privacy threats arising from 
changing context brought about by mobility.   

In this paper, we propose a novel approach to engineer-
ing adaptive privacy in mobile systems. Our approach aims 
to support software engineers in the design of applications 
that appropriately adapt their behaviour to mitigate mobile 
privacy threats. Our approach helps to identify the contextual 
properties that have to be monitored in order to detect con-
text changes that might threaten privacy. It also suggests the 
mitigation actions to be performed at runtime for any privacy 
threatening contextual change.  We build on the notion of 
privacy awareness requirements to identify attributes that 
should be monitored in order to detect context changes that 
might threaten privacy. Privacy awareness requirements are 
inferred from privacy policies, and their associated domain 
and software behavioural models. We assume that privacy 
requirements are operationalised by privacy policies ex-
pressed in linear temporal logic (LTL). Our domain models 
represent the changing context over which the system oper-
ates and are expressed in ontology web language (OWL). 
Behavioural models represent the states and transitions of a 
system and are represented as finite state machines (FSM). 

We then make use of privacy awareness requirements 
and the above models to analyse privacy threats. The out-
come of our analysis includes the discovery of privacy 
threats depending on the disclosed information. We reason 
about changes in context that do not satisfy expected privacy 
policies, and suggest mitigation actions that can be used to 
ameliorate the threats discovered. The selection of appropri-
ate mitigation actions is based on the sensitivity and obfusca-
tion levels of disclosed information. Sensitivity refers to the 
criticality or importance of the information to its owners, 
while obfuscation refers to the granularity of the information. 



We implemented our approach in a prototype tool called 
Caprice (http://www.lero.ie/SPARE/Caprice), and evaluated 
it in a number of ways. Firstly, we demonstrate that, using 
our approach, a software designer can configure different 
privacy mitigation strategies; that is, when to ignore, react, 
prevent or terminate an interaction that is privacy threaten-
ing. Secondly, using Caprice, we demonstrate that our ap-
proach correctly discovers privacy threats. Finally, we 
demonstrate that our reasoning about privacy threats is com-
putationally viable. 

The remainder of the paper is organised as follows. Sec-
tion II presents some background on privacy and awareness 
concepts relevant to our overall approach, which is then pre-
sented in section III. Section IV describes the privacy aware-
ness requirements used to derive the monitoring needs for 
adaptive privacy. Section V discusses our proposed privacy 
threat analysis, while section VI details our approach to 
threats mitigation. In section VII, we present the implemen-
tation of our approach in Caprice. Section VIII evaluates and 
discusses the impact of our approach on the software engi-
neering of privacy critical mobile systems. Conclusions and 
further work are presented in section XI 

II.  BACKGROUND 

Our research offers three main contributions. First, it de-
scribes an approach to identify privacy awareness require-
ments. Second, it uses these requirements to perform privacy 
threat analysis. Finally, it supports the selection of a proper 
mitigation action against discovered privacy threats. Given 
these contributions this section provides some background 
concepts on awareness, privacy threats and adaptive privacy. 

A. Awareness 

Dourish and Bellotti [13] view awareness as “an 
understanding of the activities of others, which provides a 
context for your own activities”. In requirements 
engineering, Souza et al. [14] define awareness requirements 
as the class of requirements about the success or failure of 
other requirements. Central to awareness is the notion of 
context, entity, and event. The most frequently cited 
description of context is that given by Dey [22]: “Context is 
any information that can be used to characterize the 
situation of an entity. An entity is a person, place, or object 
that is considered relevant to the interaction between a user 
and an application, including the user and application 
themselves”. A popular means of capturing and analysing 
such context is through the use of domain models (a 
representation of entities, their attributes with associated 
possible values and relationships). This is because domain 
models permit tractable reasoning over the different attribute 
parameters that a system interacting with its environment can 
assume [17]. Events and actions are occurrences resulting 
from context attributes assuming specific parameters (e.g., 
the door assigned the value ‘closed’). This notion of events 
and actions has been instrumental in modelling the behaviour 
of software systems. For example, using finite state 
machines (FSM) [15] events trigger the transition from one 
state to another given that certain conditions (specific values 

of context attributes) hold, while actions are used to 
represent a set of activities that can be performed in a 
particular state. Context changes occur when events or 
actions result in the addition of a new attribute, or a change 
in the assigned parameter of an existing attribute. An 
operational context then refers to a subset of attributes and 
their specific values at any particular time. A critical 
challenge for awareness research is the recognition that 
context has changed as events or actions occur in the 
environment, and the inference of current and future 
operational context based on new events and actions. 

B. Privacy threats and adaptation 

Interactions that threaten privacy generally fall into two cat-
egories: (1) the conduct by which one entity infringes on the 
rights of another (the subject) to determine for itself whether 
or not it can perform an action; (2) the conduct by which an 
entity acquires or discloses information about the subject in a 
manner for which the subject does not wish to have known 
or disclosed [9]. The first category is often referred to as the 
violation of autonomy. The second, and the focus of this pa-
per, is normally referred to as the violation of rights to selec-
tive disclosure. For socio-technical systems, selective disclo-
sure is a boundary regulation process involving the continual 
management of boundaries between different groups of ac-
tivities and the degree of disclosure within these groups [3]. 
Palen and Dourish [4] argue that these boundaries change 
dynamically as context changes. 

In this paper, we adopt contextual integrity [8] as a suita-
ble basis for modelling adaptive privacy in software systems. 
Contextual integrity posits that the transfer of information 
from a sender to a receiver in a specific context about a sub-
ject (hereafter referred to as a message) is tied to certain 
transmission principles. This is because contextual integrity 
represents an explicit model of a sender, receiver, and a sub-
ject (hereafter referred to as agents) when disclosing personal 
information, and the transmission principles that guard the 
interaction process between these entities [16]. Examples of 
such transmission principles include notice, consent, confi-
dentiality and reciprocity. These transmission principles are 
commonly captured in privacy policies [20]. Additionally, 
contextual integrity provides a means to identify points in the 
behaviour of a system where the tracking and aggregation of 
private attributes of users can lead to privacy violations. 

The application of contextual integrity to adaptive priva-
cy provides the basis upon which a socio-technical system 
can evaluate the context of its operation, and adapt where 
necessary to continuously preserve privacy. An additional  
component, albeit not mentioned in the contextual integrity 
framework, is the awareness that users and systems need in 
order to appropriately evaluate whether the context of their 
operation abides by associated transmission principles.  

Our notion of adaptive privacy is novel as there is no ex-
isting work that focuses on aiding the design of adaptation 
depending on changing privacy threats brought about by 
mobility. General work on inconsistency management in 
software engineering has considered so-called “repair ac-
tions” [23] to mitigate discovered inconsistencies. However, 



despite some similarity to our approach, it does not address 
privacy. On the other hand, Spiekermann and Cranor do pro-
vide a framework for engineering privacy [7], but without 
focusing on mobility nor on software engineering concerns. 
Our research brings these two perspectives together. It also 
differs from traditional requirements monitoring approaches, 
such as those proposed by Fickas and Feather [24] and by 
Souza et. al. [14] [30], which do not focus on privacy. Ra-
ther, we engineer monitoring activities by identifying context 
attributes that need to be monitored in order to reason over 
privacy threatening user interactions. 

III. OVERALL APPROACH AND RUNNING EXAMPLE 

Our approach identifies attributes to monitor at runtime, dis-
cover privacy threats that users may encounter and appropri-
ate mitigation actions against such threats. It consists of three 
steps shown in Figure 1. 

The first step considers three inputs from the designer: a 
set of privacy policies, a behavioural representation of the 
system, and a set of instantiated operational contexts from 
the domain model. These inputs are used to identify privacy 
awareness requirements. This is achieved by identifying at-
tributes that are common to both an operational context and 
privacy policies. This is in addition to attributes that can be 
inferred indirectly as a result of realising a specific function 
in a behavioural model (section IV). The second step per-
forms privacy threat analysis. The analysis involves reason-
ing over a sequence of operational contexts to identify priva-
cy threats. The inputs into this step are the monitored attrib-
utes derived from the privacy awareness requirements. The 
reasoning seeks to identify operational contexts that do not 
satisfy expected privacy policies during agents’ interaction 
(section V). 

The final step is the selection of mitigation actions 
against identified privacy threats. Our mitigation strategy is 
based on the severity of the threat. This severity is calculated 
through a utility function that is based on the sensitivity and 
obfuscation levels of disclosed information. Decisions on 
appropriate mitigation actions are then based on the value of 
expected utility (section VI). This process is iterative, as a 
suggested action can result in changes to privacy policies, 
system behaviour, or new operational context. The next three 
sections elaborate on each of these steps. 

We use a running example of a participatory sensing sys-
tem [10] to present and assess our approach. In particular, 
our system aims to help drivers spend less time looking for 
parking spaces in a city centre. Typical examples include 
Google Open Spot (openspot.googlelabs.com/) and Roadify 
(www.roadify.com/). We focus on key functionalities that 
enable drivers to post, request and display the fuel-optimal, 
shortest, or fastest routes to an empty parking space. For this 
example, privacy management requires the capability of 
drivers in a group to decide the limits of information disclo-
sure to other drivers – about their current location, number of 
empty spaces, their arrival time, car park name, etc. Effective 
engineering of adaptive privacy should enable drivers to un-
derstand information flows (awareness), weigh the conse-
quences of sharing information (privacy threat analysis), and 

make informed, context-specific decisions to disclose or 
withhold information (mitigation action selection). 

IV. PRIVACY AWARENESS REQUIREMENTS 

Privacy awareness requirements identify the set of attributes 

that need to be monitored to detect context changes that may 

threaten privacy. Monitoring all attributes can incur perfor-

mance cost. Therefore, we first instantiate an operational 

context from a domain model; then, by relating system be-

haviour to privacy policies we identify a subset of attributes 

in the operational context to be monitored. 

A. Instantiating operational context from domain models 

The first element necessary to identify privacy awareness 

requirements is an operational context instantiated from a 

domain model. Attribute values of the operational context 

characterise a specific scenario of information disclosure 

between two agents. For example, consider a scenario where 

an agent A (sender) transmits a message containing the loca-

tion name of agent B (subject) to another agent C (receiver). 

An agent here represents a user’s mobile device or a third-

party server granted custodian of information about a sub-

ject. If A and B are the same, then A is sending message 

about itself to C. In this scenario, an instance of an opera-

tional context includes: The values of attributes characteris-

ing the agents (e.g., subjectName = ‘Bill’, senderName = 

‘Alex’, etc.); attributes characterising the environment of the 

sender, receiver or subject (e.g. locationName =‘Foxes St.’, 

currentTime = 21.00 etc.) and attributes characterising the 

satisfaction or failure of transmission principles [16] guard-

ing the message transfer between A and C (e.g. subjectNoti-

fied = false, receiverKnown = true, etc.). A change in con-

text will alter one or more of these attributes.  

In addition to the instantiation of a domain model to 

generate an operational context, there are other properties of 

such a model necessary for engineering adaptive privacy. 

For instance, a domain model should describe the different 

inference relationships between attributes. Other privacy 

related properties include the sensitivity and obfuscation 

levels of disclosed attributes. A representation of our do-

main model is as shown in Figure 2.  

Inference relationships allow the deduction of previously 

unknown information from another disclosed attribute. This 

can be achieved either via direct implication or aggregation. 

 
Figure 1 Approach to engineering adaptive privacy 

 



They both involve the use of established rules that predict 

the value of an attribute to some degree of accuracy. Impli-

cation inference relations are uni- or bi-directional relations 

between two attributes. An example of a bidirectional impli-

cation inference is locationName ⇔ locationCoordinates 

(i.e., if a subject’s locationName is disclosed, it is possible 

to deduce the locationCoordinates and vice versa). Similar-

ly, the relation city ⇒ country is unidirectional. Aggregation 

inference can be deduced by learning patterns that occur in 

the values of attributes over time. For example, the relation 

departureTime ⇒ arrivalTime ∩ carparkName infers that 

the knowledge of the arrival time and car park name may be 

aggregated to infer the driver’s departure time. While some 

forms of aggregation relations can be bidirectional, we have 

only considered unidirectional aggregations. Generally, the-

se relationships necessitate monitoring additional attributes 

to satisfy privacy awareness requirements. For example, 

assuming locationName is private for a subject, there is also 

a need to monitor the disclosure of locationCoordinates of 

the subject. 

Sensitivity level describes the importance of a disclosed 

attribute to its owner (the subject). Highly sensitive attrib-

utes result in greater impact on (or damage to) the subject if 

disclosed inappropriately. The sensitivity of an attribute can 

also depend on the context associated with its disclosure. 

For example, a subject might consider his/her age highly 

sensitive and not to be disclosed to a cohort of acquaintanc-

es found in a social network; in other cases, it is less sensi-

tive compared to the benefit getting 20% off the cost of 

glasses for over 60’s. This variability in sensitivity demands 

a domain model that traces this property. In this research, 

we consider sensitivity level varies between very low, low, 

medium, high and very high. 

Obfuscation involves the act of degrading the accuracy 

and/or precision of a subject’s attribute. A highly obfuscated 

attribute means that it is less likely for a receiver to infer the 

identity of the subject from the attribute value. Obfuscation 

can be based on inaccuracy (i.e. lack of correctness) and/or 

on imprecision (i.e. lack of detail) in disclosed information. 

Thus, attribute values such as subjectMobileID =11223 are 

less obfuscated (i.e. accurate and precise as it uniquely iden-

tifies the subject) compared to city =’Limerick’ (i.e. accu-

rate and imprecise, because it is not possible to uniquely 

identify the subject among people living in Limerick by 

only using this attribute). Thus, the higher the obfuscation 

level associated with an attribute, the lesser the impact on 

the subject if the attribute value is disclosed inappropriately. 

As shown in Figure 2, we consider four different levels of 

obfuscation. The least level of obfuscation is associated with 

attributes whose value is precise and accurate. 

B. Relating system behaviour to privacy policies  

A behavioural model (FSM) shows the different state transi-

tions as the system responds to events and actions triggered 

by changing context. To satisfy privacy awareness require-

ments, the key is then to identify attributes that are disclosed 

as a result of a state transition, and the transmission princi-

ples that should be respected during the transition. Given 

that transmission principles can be prescribed as privacy 

policies [20], an initial subset of attributes to monitor will 

consist of those that are both common to an operational con-

text and privacy policies associated with a specific transmis-

sion principle. Subsequently, this set is further populated by 

other attributes having inference relationships with each 

identified attribute. The syntax and semantics for represent-

ing the privacy policies defining a particular transmission 

principle is defined as follows: 

 send (sender, M, receiver) temporalOperator (C )   
x

                                                      temporalOperator (C )
y

 Message: M  subject × attribute

temporalOperat

IF THEN

UNLESS

where :

 

 

 



[ ]   

or  {PREVIOUSLY, EVENTUALLY, 

                                         LAST-TIME, NEXT-TIME, 

                                         HENCEFORTH, ALL-TIME} 

Condition: C {constraint , constraint , …, 
i 1 2

 

⊆  constraint } 
k

                              constraint [(att arg value)]
j x 1

att {sender × attribute, receiver × attribute, subject × attribute}
x

arg {=, <, >, , }  
1
  value {value ,

1

and

and

 

 

  → 

 ⊆  

  ⊆  ≤ ≥

⊆  value , …, value }  value  is a literal 
2 x j

and

 

This representation extends the logic of privacy and util-

ity [18] [19] by defining IF-THEN-UNLESS rules over an 

FSM. “IF” is associated with a message transmission be-

tween a sender and a receiver. The message (M) carries an 

attribute about a subject. “THEN” and “UNLESS” specify a 

set of temporal constraints to be satisfied to preserve privacy 

during the message transmission. Temporal constraints can 

be expressed in the past (through PREVIOUSLY and 

LAST-TIME temporal operators), in the future (through 

NEXT-TIME, HENCEFORTH, EVENTUALLY temporal 

operators), and in all states (through ALL-TIME operator). 

Note that constraints are expressed in terms of relations be-

tween the attribute of a message and a specific value. 

The semantics of defining IF-THEN-UNLESS rules 

over an FSM is shown in Figure 3. To keep the example 

simple, the states, transitions and disclosed attributes shown 

in are not exhaustive. We have used an FSM based on our 

running example for this purpose. Each state transition (Ti) 

is associated with the attributes it discloses and its privacy 

policy (to represent the transmission principle). For exam-

ple, the transition T7 from the state DepartLot to LotBroad-

casted is triggered by the event PostLot. The disclosed at- 
Figure 2 Attribute based domain model 

 

 



tributes characterising this transition includes the number of 

empty spaces found by the subject, the destination car park 

name, the arrival time and name of the subject. P3 and P6 

are the privacy policies that prescribe the transmission prin-

ciple for T7.   

Thus, assuming a driver departing a parking lot wishes 

to inform other drivers of the vacated lot (transition T7 from 

DepartedLot to LotBroadcasted of Figure 3), the set of 

monitored attributes required to satisfy privacy awareness 

requirement for T7 include: noEmptySpaces, arrivalTime, 

CarParkName and departureTime. Note that departureTime 

is a member of this set by inference relationship. 

V. PRIVACY THREAT ANALYSIS  

Given a set of monitored attributes, the next step involves 

reasoning about which operational context can generate 

privacy threats. We model mobile users as a group of inter-

acting social agents in specific roles (sender, receiver or 

subject). These agents perform actions involving personal 

information in a given operational context. We assume here 

 
Figure 3 Defining privacy policies over a mobile system state machine 

Table 1 Interaction history of agents posting and requesting empty parking spaces 

t Operational context (c) Message Transmission (mt) Transition(state) 

1 

arrivalTime=7.00, carParkName=Ross St., carParkLocCord=57.9N 
10.1W, subjectInformed= false, noSpaces=?, currentTime=7.00, 

knownReceiver= true, gpsRoute=?, currentLocName= Ross St., 

currentLocCord= 60.2N 19.3W, departureTime=? 

Sender:A3, Receiver:A2, Subject:A3 

Message:  

[arrivalTime=7.00] 

T1 (ArrivedLot) 

 

2 

arrivalTime=7.00, carParkName= Ross St.,  carParkLocCord=57.9N 
10.1W, subjectInformed= true, noSpaces =5, currentTime=7.00, 

knownReceiver= true, gpsRoute=?, currentLocName= Ross St., 

currentLocCord= 60.2N 19.3W, departureTime=? 

Sender:A3, Receiver:A2, Subject:A3 

Message: 

[noSpaces=5, carparkName=Ross St.] 

T5 (LotBroadcasted) 

 

3 - - T8 (Idle) 

4 

arrivalTime=?, carParkName=?, carParkLocCord=57.9N 10.1W, sub-

jectInformed=true, noSpaces =?, currentTime=7.10, knownReceiver= 
false, gpsRoute=?, currentLocName= Bow Av., currentLocCord= 
56.2N 23.1W, departureTime=? 

Sender:A1, Receiver:A2, Subject:A1 

Message: 

[currentLocName= Bow Av.,  

 currentLocCord= 56.2N 23.1W] 

T6 (LotRequested) 

 

5 

arrivalTime=?, carParkName= Ross St., carParkLocCord=57.9N 
10.1W, subjectInformed= false, noSpaces =5, currentTime=7.15, 

knownReceiver= true, gpsRoute=?, currentLocName= Park St., 

currentLocCord= 56.2N 19.3W, departureTime=? 

Sender:A2, Receiver:A1, Subject:A3 

Message: 

[noSpaces=5, carparkName= Ross St. 

arrivalTime=7.00] 

T6 (LotReceived) 

 

6 

arrivalTime=?, carParkName= Ross St., carParkLocCord=57.9N 
10.1W, subjectInformed= false, noSpaces =5, currentTime=7.16, 

knownReceiver= true, gpsRoute=?, currentLocName= Park St., 

currentLocCord= 56.2N 19.3W, departureTime=? 

Sender:A1, Receiver:A2, Subject:A1 

Message: 

[ currentLocName= Park St., 

 currentLocCord= 56.2N 19.3W] 

T9 (RouteRequested) 

 

7 

arrivalTime=?, carParkName= Ross St., carParkLocCord=57.9N 
10.1W, subjectInformed= false, noSpaces =5, currentTime=7.19, 

knownReceiver= true, gpsRoute= Park St.->Bee Av.->Ross St, 

currentLocName= Park St., currentLocCord= 56.2N 20.3W, depar-

tureTime=? 

Sender:A2, Receiver:A1, Subject:A3 

Message:  

[gpsRoute= Park St.-> Bee Av.-> 
Ross St.,  carparkName = Ross St.] 

T15 (RouteReceived) 

 

8 - - T11 (Idle) 

 



that each agent is represented by an FSM instance that is 

used to model its behaviour across a sequence of operational 

contexts. A state transition is then triggered when an agent 

interacts with another agent by requesting or receiving in-

formation. Each agent can adjust privacy policies associated 

with its FSM instance based on specific preferences. Agents 

also have shared knowledge among their group members 

and keep memory of past interactions. In this way, a sub-

ject’s decision to consider a specific information request or 

response as privacy threatening is based on two factors: the 

history of operational context and what knowledge other 

agents in the group have about the subject. On the whole, 

assuming an attribute is being transferred from a sending to 

a receiving agent as a result of a state transition, privacy 

threat analysis reasons over what associated agents may 

know about the subject over time, and if such knowledge 

will violate the subject’s privacy policy. 

Table 1 shows a history of interactions involving a group 

of agents (A1-A3) with a common objective of posting and 

requesting empty parking spaces. Every row in Table1 rep-

resents a message about a subject transferred between a 

sender and receiver, its operational context and the associat-

ed state transition of the subject’s FSM instance.  In this 

scenario, A3 mobile device senses arrival in a parking lot; 

A3 then checks around for available empty spaces in the 

parking lot and informs A2. Subsequently, A1 is about to 

arrive the city centre and request for empty nearby parking 

spaces from A2. In response, A2 informs A1 of parking 

details it had previously received from A3. 

Our privacy threats reasoning approach combines the S5 

axiomatic system [26] (shown in Figure 4) with LTL prop-

erties specified in privacy policies. A related approach for 

reasoning about confidentiality was proposed by Landtsheer 

and Lamsweerde [21]. We use S5 to model the cumulative 

knowledge gained by agents about a subject across a history 

of interactions, while LTL properties are used to reason over 

the sequence of operational context associated with gained 

knowledge to discover privacy threats. For example, based 

on the interaction history in Table1 and assuming S5, a 

model of accumulative knowledge gained by agents about is 

represented as follows: 

 
At t1, A2 knows the arrivalTime of A3. Furthermore, A3 

does not know that A2 knows her arrivalTime, this is be-

cause subjectInformed=false for the value of operational 

context at t1. Similarly for t2, t5 and t7. No additional 

knowledge is gained about A3 for the interaction t3, t4 and 

t6 and t8. Using the S5 distribution axiom and based on the 

inference relation that departureTime ⇒ arrivalTime ∩ car-

parkName, then both A2 and A1 gain additional knowledge 

of the departure time of A3 at t2 and t5 respectively. Fur-

thermore, although subjectInformed=true for the value of 

operational context at t2, A3 still has no knowledge that A2 

knows her departure time. This is because, even though de-

partureTime is inferred by A2 when the knowledge gained 

at t1 is combined with t2, the message transmission at t2 

suggests that only the carparkName of A3 is transmitted to 

A2. Similarly, given that carParkName ⇔carParkLocCord, 
it also infers that A1 and A2 have knowledge of A3’s car-
ParkLocCord, while A3 has no knowledge that A1 and A3 
knows her carParkLocCord.   

Given the model of knowledge gained by agents about a 

subject, it is necessary to check that the sequence of opera-

tional context for which knowledge is gained by agents sat-

isfies the privacy policy of the subject. The algorithm sum-

marising our privacy threats reasoning approach is given in 

the appendix of this paper. Using the LTL properties of pri-

vacy policies, we generate two sets of privacy threats. The 

first set is an actual threats checklist, which contains threats 

resulting from existing sequence of operational context fail-

ing to satisfy privacy policies. The privacy policies that 

generate these threats are bounded by LTL properties ex-

pressed in the present or in the past (e.g., PREVIOUSLY, 

LAST-TIME and ALL-TIME).  

The second set is a potential threats checklist containing 

threats that might occur in case an expected future constraint 

on agent behaviour and operational context is not satisfied. 

Such a checklist is populated by privacy policies bounded 

by LTL properties expressed in the present or future (e.g. 

NEXT-TIME, HENCEFORTH, EVENTUALLY and ALL-

TIME). The potential threats checklist is used to regulate the 

future behaviour of agents in a group as a result of the 

knowledge they have attained about a subject. This checklist 

can decrease or increase depending on the associated LTL 

t1:    1 A2 A3 A2A3 A3
,  [ arrivalTime     arrivalTime ] M w K K K    

t2: 

 

 

   

   

2 A2 A3

A3 A2 A3

A2 A3 A2A3 A3

A2 A3 A2 1A3 A3

,  [ noSpaces carParkName  

  noSpaces carParkName  

departureTime   departureTime

carParkLocCord   carParkLocCord ]

M w K

K K

K K K

K K K w

 

 

 
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t5: 

 

 

   

   

3 A1 A3

A3 A1 A3

A1 A3 A1A3 A3

A1 A3 A1 2A3 A3

,  [ noSpaces carParkName arrivalTime    

noSpaces carParkName arrivalTime  

departureTime   departureTime  

carParkLocCord   carParkLocCord ]

M w K

K K

K K K

K K K w

  

   

 

 

 

t7:    4 A1 A3 A1 3A3 A3
,  [ gpsRoute     gpsRoute ]M w K K K w   
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Figure 4 Applying S5 axioms to group agent interactions 



property. The checklist decreases when the required LTL 

constraint is satisfied. Alternatively, when the constraint 

associated with a potential threat fails, then the potential 

threat is shifted to the actual threats checklist.  

During privacy threats reasoning, attributes involved in 

inference relations are also bound by the constraints defined 

in privacy policies associated with deduced attributes. For 

example, at t2, the knowledge gained by agents about A3 

(i.e. carParkName and noSpaces) necessitates that the oper-

ational context satisfies the policy P3 and P6 respectively. 

In addition, t2 is also bound by P2, this is because, the 

knowledge gained at t1 (arrivalTime of A3) can be aggre-

gated with some information disclosed at t2 (carParkName 

of A3) to infer the departureTime of A3. Table 2 demon-

strates to outcome of the privacy threat reasoning process 

using the interaction history in table 1. 

VI. MITIGATION ACTION SELECTION  

Our proposed approach enables the designer to define adap-

tation rules that select the appropriate action for privacy 

threat mitigation. We consider four different types of miti-

gation actions: ignore, react, prevent and terminate. A per-

son can choose to ignore a threat if the expected severity is 

low. Conversely, a higher expected severity level might 

require a different action. In react, a person can allow the 

message to be transferred, but additional conditions need to 

be satisfied by the sender or receiver to ameliorate the con-

sequence of the threat. Prevent involves a person simply 

objecting to the message transmission between the sender 

and the receiver. Finally, terminate is the action that is se-

lected when threat severity is at the peak level. For this case, 

the person withdraws from associating with the group objec-

tive. The rest of this section describes how a mitigation ac-

tion is selected in a given situation.  

A. Defining utility functions 

In our approach, designers define utility functions as the 

basis for decision making, similar to Tsauro and Kephart  

[27], and the expected utility value shows how severe is a 

privacy threat: the lower the utility value, the higher the 

severity level. The severity of a privacy threat is based on 

two factors: the sensitivity level (SL) and obfuscation level 

(OL) of disclosed information. For an attribute, the expected 

utility U is the weighted sum of two partial utilities U1 and 

U2, respectively, for the two contributing factors SL and 

OL: 

1 2

1

Expected Utility:  ( ,  )  ( ) ( )

:  Utility weight for sensitivity level of disclosed attribute

 Utility weight for obfuscation level of disclosed attribute

( )  Severity 

a a Va a Ga a

Va

Ga

a

U V G k U V k U G

where k

k

U V

 







2

of threat for a given sensitivity level of disclosed attribute

( )  Severity of threat for a given obfuscation level of disclosed attributeaU G 

 

Assigning weights to each partial utility function pro-

vides a means to indicate the impact of corresponding fac-

tor on the expected utility. For example, assuming utility 

weights of kSL=0.4, and kOL=0.6 are respectively assigned to 

the attribute currentLocationName. Then, the obfuscation 

level of currentLocationName is a larger determinant of the 

expected utility of privacy threat resulting from its inappro-

priate disclosure. Assigning a utility weight of 0 infers that 

the associated factor is irrelevant to expected utility. Thus, if 

kOL=0 for attribute noSpaces, then irrespective of the obfus-

cation level, it does not increase or decrease the expected 

utility resulting from its inappropriate disclosure.  

For our example, we defined a sample utility function 

for sensitivity and obfuscation levels. The partial utility 

function of the sensitivity level is U1 = exp(-pSL) , where 

SL is the sensitivity level and p is the damping factor indi-

cating how utility decreases, depending on the sensitivity of 

transmitted information. On the other hand, U2 = exp(OL), 

indicates how utility increases, depending on the obfusca-

tion level (OL) of transmitted information. 

B. Defining adaptation rules 

Once the expected utility has been calculated, adaptation 

rules need to be defined to select the appropriate mitigation 

action for a specific privacy threat. Figure 5 illustrates con-

tour maps of our example utility function for two different 

damping factors. Numbers on contours indicate utility val-

ues. Figure 5a shows the utility function when a designer 

configures a subject’s relaxed view about the sensitivity of 

revealed information (p=1), while in Figure 5b the subject is 

more conservative (p=5). In the conservative case, the ter-

minate zone is larger and pushes the other zones towards 

higher utility values in the bottom right of the map. In the 

conservative case, the system ignores privacy violation only 

for low SLs and high OLs.  

A set of rules is defined based on these utility values 

zones to specify when to ignore, prevent, react or terminate 

an interaction. For our example, the following set of rules is 

defined by considering the conservative case:  

:  ( , ) 3.04 IGNORE,               : 2.36 ( , ) 3.04 REACT

:1.69 ( , ) 2.36 PREVENT,     : ( , ) < 1.69 TERMINATE

a a a a

a a a a

if U V G Then if U V G Then

if U V G Then if U V G Then

  

 

The system designer is able to define zones for the utility 

values, i.e. more levels in the contour map, in order to set 

more general or detailed adaptation rules. The damping fac-

tor and weights of partial utilities U1 and U2 are set by the 

designer, but can be adjusted by the user later at runtime. 

Table 2 Results of privacy threats analysis involving 

agents posting and requesting parking spaces 
Agents Knowledge satisfied(policy, c, wi(subj),mt) 

w1 satisfied(P1, t1, w1) = false 

w2 satisfied(P2, t2, w2) = false 

satisfied(P3, t2, w2) = true 

satisfied(P6, t2, w2) = true 

w3 satisfied(P2, t2, w3) = false 

satisfied(P3, t2, w3) = true  

satisfied(P6, t2, w3) = true 

w4 satisfied(P4, t2, w4) = true 

satisfied(P6, t2, w4) = true 

 



These adaptation rules are defined for each attribute val-

ue in an operational context; e.g., ArrivalTime. But as 

shown in table 1, a message transmission in certain cases 

can involve multiple attributes. In this case, we use action 

fusion [25] for selecting the final mitigation action. This 

means that for each operational context attribute value, de-

signers define a utility function, and adaptation rules to 

make decision based on each function separately. Then the 

system aggregates these decisions to determine the final 

one. For aggregation, the system considers the dominance 

relation between actions:  

        dom  dom  dom terminate prevent react ignore  

The system therefore selects the most dominant action as 

the final decision. For example, if we have three attributes 

and adaptation rules gives {ignore, ignore, prevent} in terms 

of utility values, the prevent action dominates the others. 

Thus, the system does not transmit the message.  

Another factor that impacts the mitigation is the fre-

quency of occurring privacy threats. The key assumption 

here is that if a specific threat continues to reoccur, then it is 

a pointer that the implemented mitigation measure is not 

strong enough. Thus, when a threat occurs several times in a 

specific span, depending on the associated utility value and 

frequency, the system might need to change its adaptation 

action. Hence, another set of adaptation rules is required to 

monitor the extent to which a mitigation action is able to 

curb a privacy threat. When a specific mitigation action is 

deemed insufficient, a stronger mitigation action is recom-

mended. An illustration of such rule is as follows:       

f f

f f

:  IGNORE and T  >2 REACT,         :  REACT and T  > 2 PREVENT

:  PREVENT and T  > 1 TERMINATE              T

if Then if Then

if Then frequency of threat

  

VII. IMPLEMENTATION 

We developed a proof-of-concept tool called Caprice – an 

environment for engineering adaptive privacy.  Caprice is a 

plugin for the Microsoft .Net IDE and consists of three lay-

ers as shown in Figure 6. The modelling layer (layer 1) gen-

erates the domain, policy and behavioural model of the ap-

proach. The domain model is instantiated using an interpret-

er from a domain knowledge repository represented in OWL 

format. The policy model retrieves policy statements and 

associated LTL properties from a policy repository. These 

statements are then analysed by Prolog.Net - a Prolog en-

gine for the .NET framework [28]. Finally, a behavioural 

model is generated using Microsoft Automatic Graph Lay-

out [29] to instantiate an FSM of the system. 

The second layer is composed of the operational context 

emulator, the FSM-Policy connector and the agent interac-

tion simulator. The operational context emulator evaluates a 

sequence of operational contexts based on attributes defined 

in the domain model. The FSM-Policy Connector overlays 

FSM state transitions with privacy policies. Using the agent 

interaction simulator, Caprice can then simulate interaction 

between multiple agents. This is achieved by associating an 

FSM instance to each agent. Then a random message trans-

fer between agents is simulated using a Monte Carlo simula-

tion algorithm. It is also possible for the designer to custom-

ise the policies associated with each FSM instance repre-

senting an agent.  

 In the third layer, for every additional operational con-

text simulated in the second layer, the designer is presented 

with a runtime view of FSM instances. This includes the 

possible privacy threats and mitigation actions that can be 

generated by the added operational context. The privacy 

awareness engine filters a valuated subset of monitored at-

tributes from the operational context. This is based on infer-

ence rules specified in the domain model and constraints 

specified in the privacy policy. Subsequently, the privacy 

threats reasoner checks if the operational context of agent 

interaction satisfies the privacy policies of the associated 

subject. It does so by first building a model of knowledge 

gained interacting agents about the subject over a sequence 

of interactions.  Based on associated LTL properties, the 

privacy threats reasoner then checks if the modelled 

knowledge will satisfy the privacy policies of the subject for 

 
Figure 6 Caprice architecture 

 

 
Figure 5- Contour map of the utility function a) relaxed b) 

conservative cases for information sensitivity level  

 



that operational context. Finally, if the policies are not satis-

fied, the Mitigation Action Analyser recommends a possible 

mitigation action based on predefined adaptation rules.  

VIII. EVALUATION   

In section VI, we demonstrated how a designer can config-

ure adaptation rules. In this section, we evaluate the viability 

of our approach from two other viewpoints. First, based on 

the adaptation rules previously defined in section VI, we 

validate the accuracy and correctness of our approach using 

Caprice. Secondly, we evaluate the efficiency and scalabil-

ity of our approach. We then discuss the impact of our ap-

proach for software engineering of adaptive privacy.   

A. Correctness  

We used our motivating example to simulate a group inter-

action involving five agents (A1-A5) in Caprice. A total of 

100 message transmissions in 100 time steps (t1-t100) were 

generated during the simulation across varying operational 

contexts. Each agent is associated with an instance of FSM. 

The privacy policy assignments were those shown in figure 

3, and the adaptation rules in section VI were used. 

The results of the simulation showed that our approach 

accurately detected every operational context that posed a 

privacy threat. The suggested mitigation actions also accu-

rately reflected the defined adaptation rules. Table 3 shows 

the simulation results across three different time points 

where A4’s privacy was threatened. The time points in-

volved the agent A3 transmitting carParkName, arri-

valTime and noSpaces associated with A4 to A5 (at t20 and 

t87) and A2 (at t78). In all cases, the sensitivity and obfus-

cation levels of monitored attributes remained the same. A 

notable point across these time points is the change in miti-

gation action at t87. This change is a result of the reoccur-

rence of the same threat (i.e. same sender and subject attrib-

utes) at t78 and t87. Thus, applying the adaption rules to 

corresponding threat occurrences at t87 results in scaling the 

fused mitigation action from IGNORE to REACT. As a 

result of the continuous reoccurrence of a threat initially 

ignored by A4, a stronger mitigation action is required.  

B. Efficiency and scalability 

 We also evaluated the time complexity of our threat reason-

ing mechanism. The complexity depends on the different 

LTL properties that are used for threat reasoning. Hence, the 

objective was also to provide insights on the degree of com-

plexity that each LTL property introduces into the privacy 

adaptation approach. The results of complexity analysis for 

our reasoning algorithm are shown in table 4. This analysis 

is based on the different LTL properties used for privacy 

threats reasoning. M represents the number of privacy poli-

cies associated with the state transition being analysed. N is 

the total number of instantiated operational contexts charac-

terising the interaction history. We assumed a worst case 

where each operational context generates a potential privacy 

threat (i.e. the number of potential privacy threats is N).    

The results in table 4 shows that based on asymptotic 

time complexity, reasoning over privacy threats using any of 

the LTL properties is computationally feasible and can be 

carried out in polynomial time. Reasoning using LTL prop-

erties such as PREVIOUSLY and ALL-TIME computation-

ally grows at most quadratically. This is intuitive given that 

both properties involve reasoning over past behaviour. 

ALL-TIME involves reasoning over the whole history of 

operational contexts, and for the worst case scenario reason-

ing using PREVIOUSLY is equivalent to ALL-TIME. Fur-

thermore, reasoning through other LTL properties such as 

HENCEFORTH, EVENTUALLY, NEXT-TIME and 

LAST-TIME has linearly complexity. For this case, only 

more recent operational context is analysed. Generally, us-

ing time complexity analysis, our privacy threats reasoning 

approach is efficient. The efficiency can further be im-

proved by defining privacy policies using LTL properties 

whose growth is computationally linear. 

 Our approach is scalable even when networks involve hun-

dreds or thousands of agents. For a worst case scenario, in-

creasing the number of agents will result in increased histo-

ry of operational context (i.e. increase in the value of N). 

We argue here that based on the results in table 4, our ap-

proach is computationally scalable to even larger interaction 

networks. This is because, irrespective of the value of N, the 

computation can be achieved in polynomial time. Our ap-

Table 4 Complexity of threat reasoning algorithm based 

for different LTL properties 

LTL Property O(g(N)) LTL Property O(g(N)) 
HENCEFORTH O(max(M,N)) LAST-TIME O(M) 

EVENTUALLY O(MN) PREVIOUSLY O(MN) 

NEXT-TIME O(max(M,N)) ALL-TIME O(MN) 

 

Table 3 Results of simulating interactions in Caprice at different time points 

t 
Privacy threating message trans-

mission 
Sensitivity levels 

Obfuscation 

levels 

Expected 

Utility 

Fused Mitigation 

Action 

20 

Sender:A3, Receiver:A5, Subject:A4 

Message: [carParkName= Moore Rd., 

arrivalTime=17.00, noSpaces=3] - T6 

carParkName =low, 

arrivalTime = medium, 

noSpaces=low 

accurate-imprecise 

accurate-precise 

accurate-precise 

4.5656 

3.2453 

4.5656 

IGNORE 

IGNORE   →IGNORE 

IGNORE 

78 

Sender:A3, Receiver:A2, Subject:A4 

Message: [carParkName= Kite St., 

 arrivalTime=16.40, noSpaces=5] - T6 

carParkName =low, 

arrivalTime = medium, 

noSpaces=low 

accurate-imprecise 

accurate-precise 

accurate-precise 

4.5656 

3.2453 

4.5656 

IGNORE 

IGNORE   →IGNORE 

IGNORE 

87 

Sender:A3, Receiver:A5, Subject:A4 

Message:[carParkName= Moore Rd., 

arrivalTime=18.00, noSpaces=1] - T6 

carParkName =low, 

arrivalTime = medium, 

noSpaces=low 

accurate-imprecise 

accurate-precise 

accurate-precise 

4.5656 

3.2453 

4.5656 

IGNORE 

IGNORE   →REACT 

IGNORE 

 



proach also scales when the context attributes grows. This is 

due to the fact that our technique narrows the context space, 

by explicitly selecting the attributes to be evaluated to per-

form threat reasoning. 

C. Discussion 

Our approach relies on the designer to select and associate 

privacy policies to FSM state transitions. While this might 

pose an overhead to a generic software development pro-

cess, we argue that this is worthwhile for investigating the 

functional properties of privacy critical applications. Fur-

thermore, privacy policy, domain models and FSMs are 

models with which software designers are likely to be famil-

iar. In our approach we are able to model user interactions 

and privacy concerns based on S5 knowledge axioms and 

LTL. Thus, unambiguously identifying disclosed private 

attributes about a subject, and the operational context over 

which the sender disclosed such attributes to the receiver. 

This therefore lays the foundation for a privacy-oriented 

model-checking mechanism. Such a mechanism can poten-

tially validate systems against privacy threats. 
Our approach suggests threat mitigation actions to the 

designer by categorised adaptation actions -ignore, react, 
prevent and terminate based on the severity of privacy threat. 
We have not focused on the semantics of these categories 
and the details of how they can be implemented and applied 
to the system. We expect that an adaption action will require 
the designer to either implement an adaptation manager that 
applies the suggested mitigation action, or implement a fea-
ture that will enable the user carry out mediation actions. 
Either choice can remove/alter disclosure behaviour or ask 
the user to make context dependent decisions. Furthermore, 
although a participatory sensing system has been used to 
illustrate our approach, we suggest that our approach is gen-
eralisable to any other domain where disclosure can be mod-
elled as the transfer of information between agents, such as 
social networks and energy consumption and distribution in 
a smart grid. 

Removing or altering disclosure behaviour typically in-

volves updating state transitions by adding or removing 

states in the FSM. Alternatively, privacy policies of the user 

can be refined. For example, at the time point 87 of table 3, 

reacting to the privacy threat can involve temporally trun-

cating the state transition T6 for interaction involving agent 

A3. Alternatively, the privacy policy associated with T6 can 

be updated in a manner that accommodates the associated 

operational context. In other cases, the operational attributes 

of a state transition can be updated to reduce the lack of 

knowledge of the subject regarding an impending threat. 

Thus, based on the knowledge model presented in section 

IV A, the lack of knowledge by A3 at w2 and w3 can be 

ameliorated by updating the operational attributes of T5 for 

A3’s FSM instance (i.e. Message: [noSpaces=?, carparkName=? 

departureTime = ?]). On the other hand, asking the user to 

make a context dependent decision creates a socio-technical 

challenge that can be addressed via privacy awareness. A 

more detailed insight into these mitigation measures is the 

subject of further work. 

IX. CONCLUSION AND FURTHER WORK 

This paper has proposed a novel approach to engineering 

adaptive privacy. Our approach supports designers of con-

text sensitive software systems in discovering runtime pri-

vacy threats and possible adaptation actions to mitigate the 

consequences of these threats. Our approach utilises privacy 

policies and domain and behavioural models of a system-to-

be, combining these to derive a set of attributes to monitor. 

Based on these attributes, our approach enables the analysis 

of usage behaviour that can threaten privacy, and recom-

mends actions to mitigate the threats. Recommended mitiga-

tion actions are based on the nature of disclosed infor-

mation, and the frequency of occurrence of the threats. We 

implemented our approach in a tool called Caprice, which 

functions as a plugin in the .net development environment. 

An evaluation of our work has given us confidence in its 

usefulness. We showed how adaptation rules can be config-

ured to enable designers to examine different adaptation 

thresholds based on the expected severity of threat. By sim-

ulating a group interaction process involving a number of 

agents in Caprice, we demonstrated that our approach dis-

covers plausible privacy threats and suggests appropriate 

mitigation actions. We also evaluated the time complexity 

of our privacy threat reasoning. Our results show that our 

analysis is computationally scalable and can be achieved in 

polynomial time, suggesting some promise of scalability. 

Further work will investigate the semantics of the differ-

ent categories of mitigation strategies we proposed in this 

paper.   We have only considered agent interactions within a 

single group, and, for this reason, future work will focus on 

extending our approach for multiple groups.   
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