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Abstract

Product line engineering (PLE) needs to consider evolution and strategic
planning of evolution steps right from the beginning. If evolution is not
taken care of, the benefits of model-driven PLE (e.g., productivity gains,
strategic reuse, complexity handling) will be difficult to achieve. In this
paper we propose an approach for strategic planning and management of
feature model evolution. Our approach includes a modelling framework that
describes evolutionary changes of product lines using extended feature mod-
els (called EvoFM ), evolution plans, and fragments of models. Different
versions of a feature model along the evolution path are considered to be
“products” that can be configured using the EvoFM. By using feature mod-
els to document the evolution plan of feature models, we demonstrate an
elegant solution to dealing with long term planning of changes to feature
models.

1. Introduction

The core idea in Software Product Line Engineering is to spend addi-
tional effort into creating and implementing a family of product so that later
on single products can be derived more efficiently. Concepts from the area
of Model-Driven Engineering can be used to further increase efficiency and
automation of product derivation which leads to model-driven PLE. The
commonality and variability between the products in a product line are rep-
resented by variability models, e.g., by feature models which describe the
available features in the product line and the dependencies between them
in a hierarchical structure. A concrete product is then defined by a feature



configuration specifying which features are selected and which are deselected
in the product.

To leverage the benefits offered by the product line over many years and
keep products up to date, the product line often has to evolve. However,
it is impossible to foresee all the changes necessary in the future and scope
the product line accordingly right from the beginning. Apart from that,
changes can also be induced by evolving technologies or events in the mar-
ket place (e.g., customers changing preferences, features introduced by the
competition).

There is a general consensus that product line evolution is an important
aspect to consider [1, 2, 3], however, only very little literature is available
on strategic planning of product line evolution (see Section 5). Product line
evolution is often “handled on the fly”, i.e., the product line is arbitrarily
extended to satisfy the needs of new customers or technological changes.
Spontaneous changes to a product line can be helpful and an easy thing to
do. But to ensure sustainable success one has to apply a systematic approach
to product line evolution planning. In the context of model-driven PLE, this
requires the use of defined processes and tools to deal with evolution of feature
models (FM) and the reusable artefacts.

Our experience with industry and common engineering practices for prod-
uct line maintenance has shown that there is a huge need for proactive evo-
lution of product line artefacts (e.g., feature models, reusable assets) [4, 5].
In industrial contexts, decisions about the evolution of the product portfolio
(i.e., product line) are often made by the product management team. Such
decisions then have to be implemented by the development team. In such
situations, a strategic planning is needed to decide on the different changes
that need to be made to the feature model.

In this paper, we present a novel approach for proactive evolution man-
agement. Initial ideas related to this approach have been published in [4, 5].
Here we present an extension of our previously published papers and present
the concepts and tool support in greater detail.

Our approach considers evolution to be a sequence of models with one
model for each evolution step. As an example, consider the different versions
of the same feature model shown in Figure 1. These models represent a
product line of automotive infotainment systems that evolves over four years.
In 2009, there is just an optional radio that can be configured. In 2010, a
navigation system is added, which uses the user interface of the radio. Due
to a management decision, the navigation system is planned to be separated
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Figure 1: Evolution of a product line, depicted in terms of a sequence of evolved feature
models.

from the radio in 2011 having a display of its own while radio is offered with
a simple monochrome display only. In 2012, the navigation system will be
enhanced with the possibility to store more maps and DVD Entertainment
will be introduced, which requires a DVD Drive.

To describe the evolution, we capture the changes made to the feature
model over time in special separate models and describe the evolution path
as a combination of changes. Each change made (or planned) is considered
to be either a “model fragment” or a “change operator” on the original
model. Such changes are documented in an EvoFM model, which is a special
kind of feature model consisting of model fragments and change operators as
features.

The remainder of the paper is structured as follows: Section 2 provides
a first overview of the EvoFM framework, Section 3 introduces the various
models that are used in the framework, and Section 4 shows how to use these
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Figure 2: Metamodel for Feature Models used in this article.

models. The paper concludes with an overview of related work in Section 5
and final thoughts in Section 6.

2. EvoFM Framework Overview

This section discusses drawbacks of possible existing solutions and then
provides an overview of our approach.

In this article we assume the common notation and semantics of FODA-
based feature modelling approaches [6]. Figure 2 shows the metamodel we
refer to in the following. We restrict here to feature defined as mandatory or
optional and features groups defined as or or xor but nothing prevents from
extending the approach to further extensions on feature models like arbitrary
cardinalities for features and features groups like in [7]. Feature groups are
understood as model elements of their own (implying that a feature can own
several feature groups) but are usually denoted in diagrams as anonymous
arcs on edges between parent and child features (like in Figure 1). Cross-
tree dependencies between features are restricted to requires and excludes
dependencies. Other, more implementation-oriented models associated with
the feature models are not further discussed in this article. As explained
earlier (cf. Section 1), we consider the evolution of a product line as a
sequence of models. Hence, the essential information when reasoning about
product line evolution are the changes between feature models over time. An
apparent solution to expose these changes could be using model comparison
tools like EMFCompare [8] or Epsilon ECL [9] to determine the differences
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Figure 3: Example: the product line is clustered into fragments which are represented as
features in EvoFM. The Evolution Plan shows the different features models over time.

(“Diff Model”) between evolution steps. However, this approach has certain
limitations:

• Scalability in terms of evolution steps: Model comparison provides only
usable results for a small number of models. Comparing a large number
of different models usually results in very complex Diff Models.

• Scalability in terms of features: When dealing with evolution of large
and complex feature models it is desirable to support a suitable level of
abstraction. However, Diff Models do not provide such an abstraction
since they consider models only on the lowest level of detail.

• No support for planning: Model comparison is suitable for a set of given
models but not intended for planning and managing future evolution.
Proactive evolution is not supported by model comparison tools.

We therefore propose a new way of dealing with proactive evolution of
feature models. Feature models themselves are used as an enabling tech-
nique to model evolution plans. Our approach consists of the following key
elements:

(1) An Evolution Feature Model (EvoFM) defines which evolutionary
changes are planned. An EvoFM can be seen as a product line model (where
the different versions of the feature models, which can be instantiated using
EvoFM are the “products”). Selecting a “feature” from EvoFM means to
apply that particular change to the original feature model.
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(2) An Evolution Plan describes when the changes are applied. An Evolu-
tion Plan gives a compact overview of the evolution path and describes it as
a sequence of configurations of EvoFM. An example of such evolution plan
is depicted in Figure 3(a). Evolution plans can be seen as product maps,
where each product of the product line is a feature model at a certain point
in time.

(3) Feature Model Fragments represent detailed feature model elements on
product line level which are associated with features in EvoFM. One could
say, that they describe how the changes are applied. Figure 3(b) shows
how the feature model from the example in 1 can be clustered into frag-
ments. Each fragment corresponds to an EvoFM feature (annotations in
Figure 3(b)).

3. Modelling Evolution Plans with EvoFM

This section describes the different EvoFM elements and their semantics
in detail. EvoFM is a special type of FODA-based [6] feature models. More
precisely, the configuration of an EvoFM results in a concrete feature model,
planned (or existing) along the evolution path. To differentiate the special
EvoFM elements from conventional feature models, we name them with the
prefix Evo (e.g., EvoFeature).

To keep an EvoFM model as compact and precise as possible, we make
use of techniques such as abstraction (details in a feature model are ab-
stracted away in a EvoFM model), mappings (EvoFM elements are mapped
to features in a conventional feature model), Delta Models (set of EvoFM
modification steps, e.g., add, remove feature), and Change Operators (spe-
cial features in EvoFM describing how a feature model should change).

3.1. Abstraction

The purpose of EvoFM is to focus on the commonalities and differences
between FMs at the different evolution steps. Depending on the kind of
change, one single feature, one subtree, or a group of features (across the
whole tree) may be involved in the evolution scenario. EvoFM groups these
changes into single EvoFeatures.

1. Whenever only one feature is involved in an evolution step (e.g., “fea-
ture x will be removed next year”), that single feature is mapped to
one single feature in EvoFM. In the further discussion, we call this an
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Figure 4: EvoFeatures can represent single features, subtrees, or spread features.

EvoSingleFeature, which is a feature in EvoFM that maps to a single
feature on FM level (details of mappings will be discussed in the next
subsection). For instance, consider the features E and G in the example
in Figure 4(a).

2. Whenever, a whole subtree is involved in an evolution step, we map
the subtree to an EvoSubtreeFeature in EvoFM. Thereby, the leaf fea-
tures of the represented subtree might be leaf nodes in FM (like H in
Figure 4) but can also have children, like B, i.e., they may reside at any
location in the FMs. Hence, an EvoSubtreeFeature can be understood
as a composite node, as used in other tree-based DSLs, e.g., as used
in 3D Scene Graphs [10]. Using EvoSubtreeFeatures, one can abstract
whole subtrees whose inner structure remains stable during evolution
and is irrelevant for the evolution planning. Selecting or deselecting an
EvoSubtreeFeature in a configuration corresponds to adding or remov-
ing the whole associated subtree to or from the FM, respectively.

3. Finally, there can be situations where, for the purpose of evolution
planning, one wants to describe a change, which is associated with
features spread all over the FM. An example is S (Figure 4) which
is associated with different features spread all over the FM, here E,
G, and H. We call such a kind of EvoFeature EvoSpreadFeature. An
EvoSpreadFeature is not associated with a mapping as then EvoFM
would no longer reflect the structure of the feature models. Thus,
EvoSpreadFeatures are associated with constraints over EvoFeatures
instead. In the example, S is associated with the constraint E ∧G∧H.
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Figure 6: Metamodel for EvoFM configurations.

Consequently, E, G, and H are required by S in the example (which
could be expressed explicitly by additional cross-tree constraints – as it
is common in any other feature model) and by explicitly modelling such
constraints EvoFM benefits from additional tool support (e.g., [11]) to
ensure that all constraints are fulfilled during its configuration.

Figure 5 shows the metamodel for EvoFM models. It is structured anal-
ogously to the metamodel for feature models in Figure 2 and contains the
different types of EvoFeatures (shown in colour). An additional kind of
EvoFeatures are EvoOperators which are introduced later in Section 3.4.

Figure 5 shows the metamodel for configurations to be visualized in the
Evolution Plan (see Figure 3(a)).
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3.2. Fragments

As EvoFM is more abstract than the FM it does not contain all feature
model elements. An EvoFeature describes only that a certain evolutionary
change is applied (or not applied); it does not describe in detail how the
change occurs. Such changes are described by the so called feature model
fragments. EvoFeatures are mapped to FM fragments. Upon selection of an
EvoFeature (e.g., during proactive planning, which is equivalent to product
configuration based on EvoFM), the fragments are selected and composed to
create the evolved feature model.

As we deal with feature models as target models, we can take advantage
of their hierarchical structure to simplify the definition of fragments and the
corresponding composition process: In EvoFM, each fragment is a subtree
where its root node defines the context of the fragment (thus, called context
node). This is either a feature or a feature group from the fragment associ-
ated with the parent of the fragment’s EvoFeature. For instance, in Figure 4,
EvoFeature B is parent of EvoFeature G. Thus, the context node of the frag-
ment associated with G is one of the nodes from the fragment associated
with B (in this case the feature B itself. Figure 7 shows the mappings for all
EvoFeatures from the example above in Figure 4. As explained in Section 3.1,
EvoSpreadFeatures are not mapped to a fragment but are associated with a
constraint over other fragments instead, like S in the example.

To enable the composition of complete FMs from the defined fragments,
each fragment needs to fully specify all FM model elements and their prop-
erties contained in the fragment, e.g., feature groups, cross-tree constraints,
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Figure 8: Metamodel for fragments.

and all properties like names and cardinalities.
Figure 8 shows the metamodel for fragments. Each fragment is associated

with an EvoFeature. A fragment owns a context root node which represents
(“clones”) a feature or feature group from another fragment. It is a model
element of its own as the original feature or feature group in the other frag-
ment remains unchanged. The context root node has at least one feature or
feature group as children which can have further children of their own, as
defined in the metamodel in Figure 2. If the fragment refers to an EvoSin-
gleFeature then the context rood node has exactly one feature as child which
has no further children.

A fragment can also contain dependencies which can either refer to other
features in the same fragment or to features from other fragments. In the
latter case, again a special context node (DependencyContext) is used which
clones the feature from another fragment. In the example in Figure 4, the fea-
ture I has a requires relationship to D. Hence, D is used as DependencyContext

in the fragment containing I (here for EvoFeature H, see Figure 7).
Using a DependencyContext to refer to other fragments implies a depen-

dency between fragments which could be interpreted as a “requires” rela-
tionship between the corresponding EvoFeatures. In the above example the
EvoFeature H requires the EvoFeature B. A tool has to keep track on these
dependencies (using the same mechanisms like for conventional feature mod-
els, e.g. a SAT solver like in [11]) to ensure that only EvoFM configurations
are created which lead to the derivation of valid feature models.

3.3. Delta Models

As discussed above, the fragments define the parts for composing an FM
according to a given EvoFM configuration. However, sometimes certain con-
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Figure 9: Example Delta Model to specify dependencies between EvoFeatures.

figurations requires additional changes in the FM, for instance to model “fea-
ture interactions” [12] between EvoFeatures.

We use the concept of Delta Models [13], (sometimes also called Change
Sets [14]) to address these issues. A Delta Model defines a set of changes
to a given model, here the FM. Possible changes are the basic operations
add, delete, or modify on model elements. A Delta Model is associated with
an application condition which is a constraint over EvoFeatures. A Delta
Model is applied to all FMs whose associated EvoFM configuration fulfils
the application condition.

A Delta Model can be visually specified by annotating the model elements
to be modified with symbols representing the operations add ( + ), delete ( ),
or modify ( ). If a model element is added or cannot be uniquely identified by
its name (like feature groups which are usually anonymous in feature model
diagrams) then a sufficient amount of context has to be denoted to specify
the element’s location in the model. Table 1 shows which operators can be
applied to which model element in our approach, including the corresponding
notation (i.e. the element to be annotated in the model and the context model
elements which are at least required to identify the model element).

Figure 9(a) shows an non-trivial example: Let’s consider an extract of an
EvoFM with two EvoFeatures O, and P (Figure 9(a)). By default, O and P

are mapped to a subtree with three leaf features each (O2, O3, O4 and P2,
P3, P4 in Figure 9(b)). However, if both EvoFeatures O and P are selected
at the same time, then O4 and P1 should be omitted in the feature model
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Operator  Model Element  Notation 
Annotated Element  (Minimum) Context 

Add 

Feature  Feature to add  Parent Feature 
FeatureGroup  Feature Group to add  Parent Feature, Child 

Feature(s) 
Dependency  Dependency to add  Source, Target 

Remove 

Feature  Feature to delete  ‐ 
FeatureGroup  Feature Group to delete  Parent Feature, Child 

Feature(s) 
Dependency  Dependency to delete  Source, Target 

Modify 

Feature.isMandatory  Feature   
Feature.parent  Relationship to new parent  Feature, new parent node 
FeatureGroup.isXor  Feature Group   Parent Feature, Child 

Feature(s) 
Feature.name  Not supported (not useful, error‐prone) 
FeatureGroup.name  Not allowed (considered as deleting & adding a new 

Feature Group/Dependency) FeatureGroup.parent 
Dependency.source/target 

 

• We assume that feature groups are anonymous in the diagram, so it is necessary to show at 
least one of its children 

• Other ‘modify’ operations are not supported (because it does not make sense) and need to be 
substituted by add/replace operator. For instance, we consider dependencies to have no 
identity, so changing the target element of a dependency is considered here as deleting the old 
dependency and adding a new one. Same for feature groups. Renaming of Features is not 
supported as well because this would be too error‐prone when defined within a Delta Model. 
Renaming should be avoided if possible (to uniquely identify Features by name); if renaming is 
necessary, then a change operator should be used to make it explicit in EvoFM  

Table 1: Operations and their notation in Delta Models.

(Figure 9(c)) and, moreover, O2 and O3 should be grouped into an or group.
To describe these modifications, a Delta Model is defined for the application
condition O ∧ P which deletes O4 and P1, adds a new feature group, and
modifies the parent-child relationships of O2 and O3 so that they become
children of the new feature group (Figure 9(d)).

Delta Models can be conflicting when multiple Delta Models affect the
same model element. To avoid such conflicts we define some rules: In general,
add operations have to be executed first, then modifications, and then delete
operations (to avoid conflicts like modifying an element which has not been
created yet). Deleting a model element means that also dependent elements
have to be deleted, i.e., all its child elements as well as cross-tree constraints
which involve this model element. Other conflicts (like different modifica-
tions of the same model element) have to be solved manually by refining the
granularity of Delta Models and their associated constraints [13], which is
even easier in our case as Delta Models are used only occasionally to address
feature interactions and not to construct the main structure of FMs. An
additional solution would be to define additional dependencies between the
Delta Models, similar to the approach suggested in [14].
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3.4. Change Operators

Sometimes it is desirable to specify changes in a FM without adding or
removing features or feature groups. For instance, a feature type is changed
from optional to mandatory, or features are grouped into a feature group,
or a dependency is added between features. If such changes are relevant on
the abstraction level of the evolution plan it is necessary to explicitly model
them as configurable elements in EvoFM. For instance, one might want to
specify evolution plans such as “in 2010 the navigation system requires a
radio with display but in 2011, the navigation has a display of its own and
thus no longer requires a radio display” (see Figure 1). Such statements
can be codified using change operators, which when “activated”, change the
feature model from 2009 according to the specified plan for 2010.

In general, change operators are used in the area of model co-development
where they are used to specify changes, e.g., on a metamodel [15]. We adapt
this concept to EvoFM. As we have discussed in previous work [5], it is useful
to support not only “atomic’ changes operators (“add”, “delete”, and “mod-
ify”) but also complex operators frequently required during feature model
evolution. For instance, a frequent change is inserting a new feature group
to combine several features. While, basically, this could be described by
a sequence of simple change operations (e.g., adding a feature group, and
successively moving subfeatures to become its children) it seems more ap-
propriate to model this with a single complex operator. We hence defined a
catalogue of change operators for feature models [5].

A change operator is considered to be a special kind of feature in EvoFM,
which can be configured (i.e., selected or eliminated) and represented as part
of visualizations like the Evolution Plan in Figure 3(a). A change operator
is specified in EvoFM as a child of a feature or feature group which acts
as its context. More precisely, a change operator modifies the FM fragment
associated with its parent node.

The supported types of modifications are basically the modification of
cardinalities of features and features and moving features or feature groups
within the feature models (which corresponds to the modifications in Fig-
ure 9). More complex modifications are inserting a feature group and its
children (and the inverse operation). In [5] we presented an initial textual
syntax to define such changes. During further work with EvoFM we simpli-
fied this syntax for change operators, see Table 2. In the Evolution Plan, it
is denoted in angle brackets, like requires Radio in Figure 3.
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Legend: purple=EvoFM keywords, blue=features 

Change Operators for Features 
move to g  Moves the feature below g

to {mandatory | optional} [move to g]  Converts the feature into a mandatory/optional feature (and optionally 
moves it below g) 

subfeatures [f1, f2, ..., fn] move to g  Moves all subfeatures (or optionally some selected subfeatures f1, f2, ..., fn) 
below g 

subfeatures [f1, f2, ..., fn] to {mandatory | optional} [move to g] 
Converts all subfeatures (or optionally some selected subfeatures f1, f2, ..., 
fn) into mandatory/optional subfeatures (and optionally moves  them 
below g) 

subfeatures [f1, f2, ..., fn] to {or group | xor group} [move to g] 
Groups all subfeatures (or optionally some selected subfeatures f1, f2, ..., 
fn) into a new or‐group/xor‐group (and optionally moves  the group below 
g) 

requires g  Inserts “requires” dependency to g
excludes g  Insert “excludes” dependency to g
 

Change Operators for Feature Groups 
move to g  Moves the feature group below g 

subfeatures to {or group | xor group} [move to g]  Converts feature group into an or‐group/xor‐group (and optionally moves  
the group below g) 

subfeatures [f1, f2, ..., fn] to {or group | xor group} [move to g]  Groups subfeatures f1, f2, ..., fn into a new or‐group/xor‐group (and 
optionally moves  the new group below g) 

subfeatures to {mandatory | optional} [move to g] 
Removes the feature group and converts their subfeatures into 
mandatory/optional subfeatures of the feature group’s parent feature (or 
optionally moves  them below g) 

subfeatures [f1, f2, ..., fn] to {mandatory | optional} [move to g]  Converts subfeatures f1, f2, ..., fn to mandatory /optional subfeatures of 
the feature group’s parent feature (or optionally moves  them below g) 

 

Table 2: Syntax and informal semantics of supported change operators.

4. Working with EvoFM

This section illustrates how to work with EvoFM based on the overview
in Section 2 and the technical concepts in Section 3. The concepts presented
so far have to be complemented by appropriate tool support. Thus, we first
present basic concepts and an initial design for such tool support in Sec-
tion 4.1. On that basis we show the intended practical usage of EvoFM
(Section 4.2). Several prototypes for different single aspects of the tool al-
ready exist.

4.1. Tool Concepts

EvoFM is presented to the modeller in a Gantt visualisation (cf. Fig-
ure 10, Evolution Plan View), where each row corresponds to an EvoFeature
and the corresponding fragment. Each column in the plan corresponds to an
evolution step, showing the EvoFM configuration for this step. The modeller
can edit configurations by marking EvoFeatures as selected, eliminated, or
undecided and manage the evolution steps, e.g., by inserting a new step to
extend the time period covered by the plan. The tool also allows the modeller
to edit and extend the EvoFM, e.g., by inserting new EvoFeatures to enrich
the plan with more evolution operations. Constraints between EvoFeatures
and Delta Models referring to an EvoFeature are indicated by small icons,
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Feature Model View

Evolution Plan View

Fragment View

Figure 10: User Interface prototype of the EvoFM Tool.

which can be clicked to gather further information (e.g., to display the Delta
Model in the corresponding view).

A visual feature model editor can be used to create and edit fragments
(Fragment View). The root node for a fragment is found, e.g., by a string-
based search or by selecting a node in the Feature Model View. Delta Models
are created and edited by selecting existing models elements from the product
line and marked with symbols for adding, removing, or modifying elements.

The Feature Model View shows the product line feature model resulting
from the currently selected EvoFM configuration. As the feature models
can become very large rather quickly, the feature model view should support
appropriate interaction techniques based on visualisation principles (see, e.g.,
[16]).
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4.2. Typical Workflow
The initial data to be shown in the tool can be derived semi-automatically

from a given set of feature models, i.e., already existing feature models from
previous version of the product line. The basic idea for the automatic deriva-
tion is to perform a conventional model diff and to cluster subtrees that either
remain stable or that are modified only together within the same evolution
step into an EvoFeature (a simple implementation for deriving EvoFM from
two given feature models is described in [4]).

Based on the existing evolution plan, the modeller plans the future evolu-
tion by creating new evolution steps. The evolution plan allows to iteratively
specify single decisions by selecting or deselecting EvoFM nodes. For in-
stance, if a manager decides that “in 2013, we will no longer support Radio”
(see Figure 1), the modeller inserts a new evolution step 2013 in the timeline
and deselects the EvoFeature Radio there. The tool then has to notify the
modeller about potential consequences, if, e.g., other EvoFeatures depend on
Radio.

When some features need to be added to the product line, which have not
been considered so far (e.g., “in 2014 the multimedia devices should be ex-
tended by an optional video screen with the optional split screen capability”),
the modeller creates a new EvoFeature (e.g., VideoScreen as child of Multime-

diaDevices) and defines the corresponding model fragment. The fragment is
defined as discussed in Section 3.2. Here, e.g., the fragment could consist of
a feature VideoScreen with an optional child SplitScreen and the context node
MultimediaDevices. It should be mentioned, that fragments do not need to be
created immediately when specifying the decision but can be added later by
a technical domain expert.

Depending on the evolution plan, sometimes fragments need to be split.
For instance, in the example from Figure 4, feature D is part of fragment
B. To specify a decision like “in 2014, D is no longer part of the product
line”, one has to split the fragment B and put the feature D in a fragment
of its own. A large part of this work can be performed by the tool: The
modeller selects the subtree within the fragment B which should be put in a
fragment of its own (here, just the feature D) and calls a command “split”
(Figure 11(a)). The tool then creates a new EvoFeature (e.g., named D as
well) which is in automatically selected in all existing configurations where
EvoFeature B is selected so far. If other fragments or Delta Models contain
references on D (like fragment H) then the resulting dependencies between
EvoFeatures are updated automatically (i.e., EvoFeature H requires the new
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Figure 11: Splitting fragments.

EvoFeature D now, (Figure 11(a))). Finally, in the example case from above,
the modeller deselects the new EvoFeature D in the configuration for 2014.

Structural changes, like changing a mandatory feature in the product line
to optional, requires the insertion of a new Change Operator. The Change
Operator is added to EvoFM as a child of an EvoFeature. Its semantics
is indicated by a textual label as described in Section 3.4. At any point
during the work with EvoFM, the modeller can select a configuration for
an evolution step and inspect the resulting feature model. Finally, when a
configuration is fully specified (including all the fragments for the features
selected), the resulting feature model can be automatically created and, e.g.,
be exported to other tools.

4.3. Limitations

In this section we discuss the degree of abstraction EvoFM provides and
its limitations. Basically, EvoFM provides abstraction from the details of
changes in the feature model over the time by clustering them into fragments.
As a fragment can be any kind of subtree below a selected context node,
all features which are connected by a parent child-relationship (including
siblings below the context node) can be clustered into a fragment. In turn,
the number of fragments (and thus the complexity of EvoFM) increases,
the less features can be clustered together. Moreover, fragments have to be
subdivided further if fragments for different evolution steps intersect each
other. The number of required EvoFeatures (aside from change operators)
results from the number of features/feature groups changed over all evolution
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steps minus the number of features which can be clustered together. More
precisely:

Let N = {n1, . . . , ni} be a set of feature model nodes (features or feature
groups) and R ⊆ N×N be the set of parent-child relationships between them.
Furthermore, let ∆t = (Nt, Rt) be a tuple of all nodes changed at evolution
step t (i.e. added to or removed from the product line at this evolution
step) and all relationships between them (including added relationships and
existing relationships; if any).

For a sequence ∆t1 ,∆t2 , . . . ,∆tk for different evolution steps t1, t2, . . . , tk
the number of required EvoFeatures can be calculated as follows:

Number of EvoFeatures = |
tk⋃

l=t1

Nl| − |
tk⋂

l=t1

Rl|

The worst case occurs when, over the time, every node on product line
level becomes subject to a change (i.e. |

⋃tk
l=t1

Nl| is equal to the number of
nodes) and changes over the time overlap so that no subtrees can be clustered
any more (i.e., |

⋂tk
l=t1

Rl| = 0). In this case, the number of EvoFeatures is
equal to the number of nodes on product line level which results in a very
low degree of abstraction (however, EvoFM then still provides a benefit by
enabling to show the different changes over the time in terms of an evolution
plan). In addition, change operators have to be considered as well, so that,
in theory, EvoFM can contain more EvoFeatures than the feature model on
product line level over the time. Nevertheless, in most practical settings
there will be at least a set of stable core product line features so that the
worst case scenario will not occur.

A second issue is that after a large number of evolution steps a significant
part of EvoFeatures might become deprecated, because of features which
were only relevant in earlier evolution steps but do not play any role in the
current and future product line any more. Keeping these EvoFeatures results
in unnecessary complexity of EvoFM while getting rid of them results in loss
of information about earlier product line versions. A possible solution to
address this issue is to allow the user selecting the time frame for which to
display EvoFM while storing all information about previous versions in the
background.
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5. Related Work

Product line engineering should treat evolution as the normal case and not
as the exception [17]. Despite this importance surprisingly few approaches
deal with product line evolution (e.g., [18? , 19]). Evolution support is of
particular importance in model-driven PLE, e.g., to ensure consistency after
changes to meta-models, models, and other artefacts. Several authors [20, 21]
stress the importance of approaches for product line evolution to avoid the
erosion of a product line. Some existing work deals with implementation
issues for evolving product lines like [22, 23], e.g., using aspect-oriented pro-
gramming. Mende et al. [24] describe tool-support for the evolution of
product lines based on the “grow-and-prune” model, i.e., they support refac-
toring code that has been created by copy & paste and which can potentially
be propagated to product line level. Svahnberg and Bosch [19] report on
experiences regarding the evolution of products, components, and software
architecture.

Deelstra et al. [25] focus on product derivation. Besides other aspects
they discuss different types of adaptations of product lines (product spe-
cific adaptation, reactive evolution, proactive evolution) and the scope of
adjustment (e.g., adding variants or variation points). According to this,
our approach addresses proactive evolution, i.e., active planning of future
versions on domain level.

Evolution of models in general is addressed in the area of “model co-
evolution”. As shown in [15], the most common way to provide semantically
rich descriptions of changes in a model is the usage of a set of change oper-
ators. For instance [26, 27, 28] provide large sets of complex operators for
changes in metamodels.

Some work focusses on changes between feature models. Thüm et al. [29]
present a tool to classify whether some given changes on a feature model
result in a specialization (enlarging the set of products), a generalization (re-
ducing the set of products), or a refactoring of the model, or in an arbitrary
change. Other work provides change operators for different purposes, like fea-
ture model generalization [30] or feature model specialisation [7]. Follow-up
work in [31] also discusses feature model changes for co-evolution, which in-
cludes addition and deletion of nodes, moving nodes or subtrees, and changes
of cardinalities. As we discussed in [5], existing sets of change operators are
not sufficient in the context of proactive evolution of product lines. Thus, we
presented catalogue of evolution operators in [5] which was the foundation
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for Section 3.4.
Another concept which we reuse and adapt in our work are model frag-

ments and Delta Models. Model fragments (or “model snippets” [32]) can be
used in model-driven product line engineering to implement “positive vari-
ability”, i.e., the composition of a product according to a given feature model
configuration [33]. The composition can then be achieved using techniques
for model merging [9] or model weaving [34]. In [17], fragments of variabil-
ity models are used to allow multiple teams parallel evolution of variability
models.

Delta Models can be used to specify changes on a given model. Hen-
drickson and van der Hoek [14] describe a tool for specifying delta models
(which they call “change sets”) and relationships between them to describe
the variability in product line architectures. Schaefer [13] uses Delta Models
for incremental model refinement and provides a formalization of the Delta
Models.

However, none of the existing work addresses product line evolution in
terms of systematic proactive planning. We presented first ideas towards
feature-oriented modelling of product line evolution, including an overall
conceptual framework and three application scenarios, in earlier work [4].
A catalogue of Change Operators for Feature Models has been presented
in [5]. The current report integrates these results and presents a concrete
realization, including the resulting metamodels.

6. Summary and Outlook

EvoFM has considerable potential to support proactive evolution of fea-
ture models. By using feature modelling technique to model the evolution
plan, we have achieved an elegant way of dealing with changes. EvoFM lever-
ages the capabilities of feature models to model commonalities and variability
between a large number of assets on an appropriate level of abstraction. Plan-
ning is supported by step-wise specification of feature configurations. Also,
product line developers are already familiar with feature models, which is an
additional advantage.

In summary, an EvoFM abstracts from the details of concrete product line
feature models at the different evolution steps by focusing on commonality
and variability. The concrete product line feature model elements associated
with an EvoFeature are defined in fragments. Thus, the constraints which are
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relevant to the evolution can be expressed as dependencies between EvoFea-
tures itself, while irrelevant details can be hidden in the fragments, which
reduces complexity for the modeller. Delta Models and change operators can
be used to further adapt the models composed of fragments. Delta Models
are used to specify changes on the fragments for specific EvoFM configu-
rations, analogous to feature interactions in conventional product lines. In
contrast, change operators specify changes on fragments in terms of the evo-
lution and thus act as a special kind of EvoFeatures, which can be explicitly
be applied (depending on the configuration of EvoFM) to evolution steps.

We are currently working on a more comprehensive and complete tool
suite for proactive evolution of feature models. Here, feedback from industry
partners has helped us a lot in understanding the practical requirements for
such tool support.

In this paper, we focused on the product line’s feature model only. Fu-
ture work will include the extension of the approach towards other parts of
the product line (e.g., the implementation models associated with the fea-
ture model), such that (1) for each evolution step a whole product line can be
derived from an EvoFM configuration and (2) the evolution plan can be anal-
ysed in more detail, e.g., to discover hidden dependencies or inconsistencies,
which can only be detected by taking the implementation into account.
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