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Abstract 
 
BACKGROUND – The accurate prediction of where faults are likely to occur in code is important 
because it can help direct test effort, reduce costs and improve the quality of software. 
OBJECTIVE – To summarise and analyse the published fault prediction studies in order to identify 
approaches used to build, measure and validate the performance of fault prediction models.  
METHOD – A systematic literature review of fault prediction in 148 studies published from 
January 2000 to December 2009. Studies are classified in terms of their context, the variables and 
methods used to build models as well as how the performance of a model is measured and validated.  
RESULTS – An increasing number of studies use machine learning approaches to predict where 
faults are likely to occur in code. These use a wide variety of methods to build models. Fault 
prediction models are based mainly on static code metrics, change data and previous fault data. The 
performance of models is measured in a range of ways that makes cross comparison very complex. 
The external validation of models is rarely demonstrated. Models reporting very high performance 
measures (eg. over 90%) need to be treated with particular caution.  
CONCLUSION – The literature in this area is just beginning to mature with a small but growing 
number of studies appearing that transparently report models built using rigorous techniques; the 
performance of these models have been measured in credible ways. However, many studies do not 
present their methods clearly enough to enable the performance of their models to be convincingly 
demonstrated. A more standardised way of building and reporting on such performance is needed 
before potential model users can confidently evaluate these studies.   

 
1. Introduction 
 
This systematic literature review (SLR) aims to identify and analyse the models used to predict 
faults in source code in papers published over 10 years (between January 2000 and December 
2009). The output from the review is a summary and evaluation of how studies have developed, 
used and validated models for fault prediction in software engineering. Many important aspects 
of model construction are analysed and a rigorous starting point in the area is provided for 
future researchers. This paper also provides a comprehensive entry point for practitioners 
preparing to use fault prediction models.  
 
Fault prediction is a complex area of research and the subject of many previous studies. 
Software practitioners and researchers have explored various ways of predicting where faults 
are likely to occur in software to varying degrees of success. These studies typically produce 
fault prediction models that allow software engineers to focus development activities on fault-
prone code, thereby improving software quality and making better use of resources. However, it 
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is difficult to get an overall picture of the current state of fault prediction, given the disparate 
nature of the individual models published.  
 
Two previous reviews of the area have been performed ([9] and [4])1. Our review differs from 
these reviews in the following ways: 
 

- Timeframes. Our review is the most contemporary as it includes studies published from 
2000-2009. Fenton and Neil conducted a critical review of software fault prediction 
research up to 1999 [9]. Catal and Diri’s [4] review covers work published between 
1990 and 2007. 

- Systematic approach. We follow Kitchenham’s [12] original and rigorous procedures 
for conducting systematic reviews. Catal and Diri did not report on how they sourced 
their studies stating that they adapted Jørgensen and Shepperd's [10] methodology. 
Fenton and Neil did not apply the systematic approach introduced by Kitchenham [12] 
as their study was published well before these guidelines were produced.  

- Comprehensiveness. We do not rely on search engines alone and, unlike Catal and Diri, 
we read through relevant journals and conferences paper-by-paper. Consequently, we 
analyse many more papers and include 74 papers which do not appear in Catal and 
Diri’s review. Beecham et al [3] reports a paper-by-paper analysis of our SRL 
compared to Catal and Diri’s.  

- Analysis. We provide a more detailed analysis of each paper. Catal and Diri have 
focused on the context of studies including: where papers are published, year of 
publication, types of metrics used, datasets and approach. In addition, we report on how 
the performance of models is measured and how models are validated.  

 
This paper is organised as follows. In the next section, we provide some background to fault 
prediction. Section 3 presents our systematic literature review methodology. Section 4 contains 
the results of the papers we reviewed. A discussion of our results is presented in Section 5. 
Section 6 concludes the study. 
 
2. Fault prediction modelling 
 
Fault2 prediction modelling has become a popular method for the early identification of fault-
prone code. It is now the topic of a large body of software engineering literature. In this section 
we discuss factors which underpin the development of a prediction model likely and present 
basic recommendations relating to principles of measuring the performance of such models.  
 
2.1 Developing a fault prediction model 
 
Developing a reliable fault prediction model requires a number of model building concepts to 
be appropriately addressed. These concepts must be taken into account when reviewing models 
of fault prediction. These essential model building concepts include: 
 

1. Predictor or independent variables. These are usually metrics based on software 
artefacts, such as static code metrics or change data, and are usually features that enable 

                                                 
1 Note that two referencing styles are used throughout this paper, [ref#] refers to papers in the main reference list 
while [[ref#]] refers to papers in the separate systematic literature review list which is located after the main 
reference list. 
2 ‘Fault’ is used interchangeably in this study with the terms ‘defect’ or ‘bug’ to mean a fault in software code.  
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some degree of fault prediction. This review is scoped to those models using 
independent variables based on units of code, such as files, classes or modules of code.  

 
2. Output or dependent variables. The output from the model is a prediction of fault 

proneness in terms of faulty versus non-faulty code units. This output typically takes 
the form of either categorical or continuous output variables. Categorical outputs 
classify code units as either faulty or non-faulty. Continuous outputs usually provide 
the number of faults in a code unit3.  

 
3. Modelling methods. One or more modelling methods are used to explore the 

relationship between the predictor variables (or independent variables) and the outputs 
(or dependent variables). These methods may be, for example, types of statistic like 
regression or machine learning.  

 
2.2 Measuring the performance of prediction models 
 
Measuring the predictive performance of models is an essential part of model development and 
subject to on-going debate in the literature. We base the following overview of performance 
measures on work by Arisholm et al [2], Ostrand & Weyuker [15] and Lessman et al [[51]]. 
 
Reporting performance is often based on the analysis of data in a confusion matrix as shown in 
Table l and explained further in Table 2. This matrix reports how the model classified the 
different fault categories compared to their actual classification (predicted versus observed). 
Many performance measures are related to components of the confusion matrix shown in Table 
2. These components can be either within a confusion matrix or used individually. Confusion 
matrix measures of performance are most relevant to fault prediction models producing 
categorical outputs, though continuous outputs can be converted to categorical outputs and 
analysed in terms of a confusion matrix. 

 
 Predicted defective Predicted defect free 
Observed defective True Positive (TP) False Negative (FN) 
Observed defect free False Positive (FP) True Negative (TN) 

Table 1. A confusion matrix 
 
 

Construct  Also known as  Description 
 

   
False Positive  FP, and Type I Error Classifies non faulty unit as faulty 

 
False Negative FN, and Type II Error Classifies faulty unit as not faulty 

 
True Positive TP Correctly classified as faulty  
True Negative TN Correctly classified as non faulty 

Table 2. Confusion matrix based performance indicators 
 
Composite performance measures can be calculated by combining values from the confusion 
matrix (see Table 3).These measures are most suitable when using imbalanced data as they are 
proportional to the class distribution (where code is viewed in two classes – faulty or non 
                                                 
3 This binary division into continuous or categorical oversimplifies model outputs as, for example the output of a 
logistic regression is a probability of faultiness and it is only the cut-off value used that converts this into a 
categorical classification [[51]]. 
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faulty). ‘Recall’ (otherwise known as the true positive rate, probability of detection (pd) or 
sensitivity) describes the proportion of defective code correctly predicted as such, while 
‘Precision’ describes how reliable a defective prediction is, or, more specifically, what 
proportion of code predicted as defective actually was faulty. Both are important when 
modeling with imbalanced data, but there is a trade-off between these two measures [[146]]. 
Furthermore, particular requirements may favour one measure over another. For example, 
safety critical systems may be more interested in recall in order to catch as many defects as 
possible; business systems on the other hand may be more interested in precision. To remain 
competitive, business system development cannot afford to spend lots of time on testing as they 
need to release their product while business demand is high. An additional composite measure 
is the false positive rate (pf) which describes the proportion of erroneous defective predictions. 
Thus, the optimal classifier would achieve a pd of 1, precision of 1 and a pf of 0.  
 
The performance measure balance combines pd and pf, a high balance value (near 1) is 
achieved with a high pd and low pf. Balancing can also be adjusted to factor in the cost of false 
alarms which typically do not result in fault fixes. 
 
Some machine learners have parameters that may be altered (e.g. a decision threshold) that 
results in different combinations of pd and pf. When the combinations of pd and pf are plotted 
they produce a Receiver Operator Curve (ROC). This gives a range of balance figures, and it is 
usual to report the area under the curve (AUC) as varying between 0 and 1, with 1 being an 
ideal value. However, some learners produce low AUC values but when tuned can produce 
high balance values. 

 
Construct Defined as Description 

 
Recall  
pd (probability of detection)  
Sensitivity  
True positive rate 

 
TP / (TP + FN)   

Proportion of faulty units correctly 
classified 

Precision  TP / (TP + FP) Proportion of units predicted as faulty  
pf (probability of false alarm) 
False positive rate   
 

FP / (FP + TN) Proportion of non faulty units 
incorrectly classified 

Specificity  
 

TN / (TN + FP) Proportion of correctly classified non 
faulty units 
 

 f-measure  (2  x Recall x  Precision) / 
(Recall + Precision) 

Most commonly defined as the 
harmonic mean of Precision and 
Recall 
 

Accuracy  (TN + TP) / (TN + FN + FP + 
TP) 

Proportion of correctly classified units 
 

Mis-classification rate 
Error-rate 

1-accuracy Proportion of incorrectly classified 
units 
 

Balance  
2

)1()0(
1

22 pdpf
balance

−+−
−=

Combines pf and pd into one 
measure and is most commonly 
defined as the distance from the ROC 
‘sweet spot’ (where pd=1, pf=0). 
 

Receiver operating 
characteristic (ROC) curve 

 A graphical plot of the sensitivity (or 
pd) vs. 1 – specificity (or pf) for a 
binary classification system Where its 
discrimination threshold is varied  

Table 3. Composite performance measures 
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Table 4 shows the other ways in which the performance of a model can be measured. Such 
measures can be used in models that produce either categorical or continuous outputs. Fault 
prediction studies often report several different performance indicators as the tools commonly 
used (e.g. Weka4) produce them automatically. However, the efficacy of the measure used 
depends on many aspects of the study and must be interpreted within the wider context of the 
study. Correct interpretation of model performance depends on many factors and requires a 
good understanding of data that contextualises the study. Often such context data is not reported 
or is presented ambiguously. Data balance (class distribution) in particular makes a significant 
difference to how some performance measures should be interpreted. 
 

Measure Constructs and Definitions  
 

Completeness or effectiveness 
 

% of faulty classes detected, proportion of total faults detected  

Correctness  
 

% of classes correctly predicted as faulty  

Descriptive statistics % of bugs found in system, Standard Dev, Mean, t-test, 
ranking, variance, z 
 

Error measures Relative error, Relative square error, standard error of 
estimate, Root mean squared error, median relative error, 
mean square error, mean absolute error, mean absolute 
relative error, error rate. 
 

Regression coefficients Regression - logistic, Regression R2 (linear) - incl derived co-
efficients, Regression R2 (nonlinear), cubic r2 

  
Significance  Usually described in terms of p-value,for example p ≤ 0.05  

Table 4. Performance indicators defined 
 
With the use of some performance indicators (in particular accuracy and error rate) data 
balancing (or class distribution) can be fundamental to developing reliable prediction models 
for categorical outputs. Most initial sets of fault data are significantly imbalanced with many 
more non faulty code units occurring in the data set than faulty units. Without model developers 
deliberately using over/under sampling methods (e.g. [6]) to balance the two classes of data, 
model predictions may be unreliable. In particular, machine learning (ML) classifiers are often 
unable to detect faulty modules since the majority of modules they learn from tend to be fault-
free. Sun et al [18] note in their study using Support Vector Machines that “since the dataset is 
imbalanced, the [classification approach] will be expected to over-predict the majority class”. 
Studies reporting model performance in terms of accuracy and which pay no regard to data 
balance, may report a significantly inflated model’s performance. However discussion 
continues about the interplay between data balance and model performance indicators (see 
[[105]], [[113]], [3], [11]). 
 
Demonstrating the validity of fault prediction models is essential. In the context of gaining 
insight into how well a defect predictor could perform on future projects, a model is only valid 
if it is tested on unseen data (i.e. data that was not used during the training process) [[62]]. The 
holdout validation technique is one way of demonstrating the internal validity of models. It is 
most relevant to machine learning approaches, but can also be applied to improve the 
robustness of results in statistical studies. With holdout experiments, the original data set is split 
into two groups: {training set, test set}. The model is developed using the training set and its 
                                                 
4 Available at: http://www.cs.waikato.ac.nz/~ml/weka/index_downloading.html 
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performance is then assessed on the test set. As with all experiments, a result can occur by 
chance due to the way the data has been split. To overcome this an n > 1 fold cross validation 
process can be used, where the data is split into n groups {g1..gn}. For 10-fold cross validation, 
ten experiments are carried out with each of the groups being used as the test set in one of the 
ten runs; all other groups combined are thus used as the training set. Cross-validation is an 
extension to the holdout validation technique and is commonly used in machine learning 
studies. However cross-validation does not address the external validity of models and does not 
demonstrate how well a model will perform outside its immediate environment. This must be 
demonstrated by applying a model across systems, programs and with varying development 
groups [13].  
 
3: Methodology 
 
We take a systematic approach to reviewing the literature on the prediction of faults in code. 
Systematic literature reviews (SLR) are well established in medical research and increasingly in 
software engineering. We follow the systematic literature review approach identified by 
Kitchenham [12].  
 
3.1 Research Questions 
 
The overall aim of this systematic literature review (SLR) is to analyse the models used to 
predict faults in source code. Our analysis allows studies to be understood and interpreted by 
answering the research questions in Table 5. 
 
Research Questions Motivation 

        
RQ1  What is the context of the fault 

prediction model? 
This question allows us to understand the environment for which the 
prediction model was developed. We examine context primarily in terms 
of the origin of systems and the programming language that the model 
has been developed and tested on. This contextual information allows 
us to discuss the applicability and generalisability of models. 

RQ2  What variables have been used in 
fault prediction models? 

This question identifies the independent and dependent variables of the 
model. The answer shows the range of predictors of fault proneness 
used in models as well as the form that these take. We can also report 
on how thoroughly some variables are investigated compared to others. 

RQ3 What modelling methods have been 
used in the development of fault 
prediction models? 

This question identifies whether models are based on regression, 
machine learning or other approaches. The answer to this question 
allows us to discuss the popularity and effective use of particular 
modelling methods. 

RQ4 How do studies measure the 
performance of their models?   

Understanding how prediction studies measure and validate model 
performance gives an indication of how confident we can be in these 
results. We analyse several aspects of model performance (e.g. 
significance levels, data balance, accuracy) to discuss how well models 
are able to predict faults in code. 
 

 
Table 5. The research questions addressed 

 
It is important to note that a limitation of this study is that we do not report the performance of 
particular models. As there are multiple performance measures reported by both statistical 
models and machine learning models. Although we would like to be able to say that the best 
result for technique x produces a performance y, unfortunately there are too many factors which 
need to be taken into account when comparing studies even when they have reported the same 
performance measure to make this feasible. 
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3.2 Inclusion criteria 
 
To be included in this review, a study must be reported in a complete paper published in 
English as either a Journal paper or Conference proceedings. The criteria for papers to be 
included in our SLR are based on the inclusion and exclusion criteria presented in Table 6.  
 
Inclusion criteria Exclusion criteria 

 
A paper must be… A paper must not be… 

An empirical study  
Focused on fault prediction, estimation or validation Highly specialised focused on, for example: testing, 

fault injection, inspections, reliability modelling, 
aspects, effort estimation, debugging, faults relating to 
memory leakage etc., embedded software, nano-
computing, fault tolerance. 
 

Use independent variables linked to outputs based on 
code  
 

About the detection or localisation of existing 
individual known faults.  
 

Faults in code is the main output (dependent variable) Focused on the datasets/metrics used in the model 
rather than the prediction model 

  
Table 6. Inclusion and exclusion criteria 

 
Before accepting a paper into the review, we excluded repeated studies. If the same study 
appeared in several publications we included only the most comprehensive or most recent.  
 
3.3 Identification of papers 
 
Our searches for papers were completed at the end of December 2009. Included papers were 
published between January 2000 and December 2009. There were three elements to our 
searches: an issue-by-issue manual reading of paper titles in relevant Journals and conferences; 
key word searching using search engines; identification of papers using references from 
included studies. The Journals and conferences shown in Appendix B were manually searched 
issue-by-issue. These were chosen as highly relevant software engineering publications found 
previously to be good sources of software engineering research [10].  
 
Keyword searching was performed on the ACM Digital Library, IEEExplore and the ISI Web 
of Science. These search engines cover the vast majority of software engineering publications 
and the search string we used is given in Appendix A. We also included all papers within our 
timeframe from the Catal and Diri [5] review. Our initial searches omitted 23 of Catal and 
Diri’s papers as their search term included the term ‘quality’. We excluded this term from our 
searches as it generates a very high false positive rate.  
 
Table 7 shows that our initial searches elicited 1,616 papers. The title and abstract of each was 
evaluated and 1,412 were rejected as not relevant to fault prediction. This process was validated 
using a randomly selected 80 papers from the initial 1,616. Three researchers separately 
interpreted and applied the inclusion and exclusion criteria to the 80 papers. Pairwise inter-rater 
reliability was measured across the three sets of decisions to get a fair/good agreement on the 
first iteration of this process. On the basis of the disagreements we clarified our inclusion and 
exclusion criteria. A second iteration resulted in 100% agreement between the three 
researchers. We looked at the remaining 202 papers in detail including checking for references 
to other relevant papers (we found a further 80 papers in this way). Data was extracted from 
each of these papers using the classification schemes discussed in the next section. During this 
process we found some papers that did not contain the data needed to answer our specific 
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research questions and these were also rejected.  This process was validated by two researchers 
classifying all accepted papers according to the type of fault being predicted and the types of 
metrics used. A third researcher checked the classification of fault type. Finally the 23 extra 
papers from Catal and Diri’s complementary review were also included. This process resulted 
in the 148 papers included in this review. 
 
Selection Process # of papers Validation

Papers extracted from databases, conferences and 
journals 

1,616 80 random papers independently classified 
by 3 researchers 

Sift based on title and abstract -1,414 rejected Fair/good inter-rater agreement on first sift 
(k statistic test) 

Full papers considered for review 202 primary 
 80 secondary 

Each paper undergoes further checks 
when filling in data analysis forms, more 
papers rejected on the basis that they do 
not answer our research questions 

Papers accepted for the review 148 papers  23 of these papers are sourced from Catal 
and Diri’s review 

 Table 7. Paper selection and validation process 
 
3.4 Analysis of papers 
 
3.4.1 Developing classification schemes 
 
We use several data classification schemes to facilitate our analysis. These are largely based on 
previous work on prediction modelling in software engineering and are discussed below.  
 
Analysing the variables used in models. We use MacDonell and Shepperd’s [13] work to 
motivate our analysis of the predictor/independent variable. Appendix D shows the more 
detailed coding scheme we devised to classify the static code independent variables studies 
used. We adapt Runeson et al’s [17] scheme of output metrics to identify the two ways in which 
dependent variables (i.e. faults) may be classified, i.e., categorically or continuously.   
 
Analysing the modelling methods used in models. We use two main categories of modeling 
methods: statistics and machine learning (this categorisation is largely based on Fenton and 
Neil [9]). Our finer grained analysis of statistical methods was developed by us to reflect the 
statistical methods used in studies and is shown in Appendix E. We base our finer grained 
analysis of the type of machine learning approaches used on Lessman et al’s [[51]] 
classification of models (shown in Appendix F).  
 
Analysing data balancing. We devised a classification scheme to understand how and if data 
imbalance had been dealt with by studies reporting categorical outputs (continuous models do 
not normally need to be as concerned about data balance). Our scheme was grounded in the 
studies we reviewed and is derived as follows: One researcher read through all papers reporting 
categorical models and extracted any approaches employed by the authors that might relate to 
how the studies address the problem of data imbalance. This list of approaches was given to a 
second researcher who used it to devise the categories shown in Appendix G.  

 
Analysing the measurement of model performance. We analyse several aspects of model 
performance to discuss how well models predict faults in software. Our schemes for analysing 
the indicators used are grounded in the studies included in this review. We classify each study 
included in this review in terms of the performance indicators reported to have been used in the 
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papers. We analyse the performance of categorical studies (usually machine learning based 
studies) based on the application of the confusion matrix as shown in Appendix H.  
The performance of studies based on continuous data is usually based on statistics. We have 
analysed the statistics used in continuous studies as shown in Appendix I. 
 
3.4.2 Extracting the detailed contents of each individual paper 
 
Three researchers were involved in the extraction of data from studies using our classification 
schemes. Initially all three researchers extracted data from the same five studies. Their results 
were compared and any disagreements discussed in detail. As a result of this, the classification 
schemes were adjusted and the researchers’ expertise on applying them improved. Data from a 
second set of five papers was then extracted by all three researchers using the classification 
schemes. Again, any disagreements were thoroughly discussed and a final adjustment was 
made to the classification schemes.  
 
3.4.3 Presenting classification data 
 
All papers included in this study are listed in a separate section of references and numbered 1-
148. This special section of references appears after the main reference list. Each included 
paper reference has assigned to it a key showing the classifications extracted during the analysis 
phase of this review. The key provides data for each paper relating to how it has been classified 
for each of the data tables in this review (Tables 10-25). For example: 
 
[[114]] Elish, K. O. and Elish, M. O. 2008. Predicting defect-prone software modules using support vector machines. 

J. Syst. Softw. 81, 5 (May. 2008), 649-660. 
(Paper=114; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=4; T19=NA; T20/21=1,7; T22=2; T23=2; T24=n; T25=y) 

 
The key for this paper shows that for Table 10 (data used) this paper is coded ‘2’ (NASA data); for Table 
11 (Language used) this paper is coded ‘1’ (C/C++) etc. 
 
References to individual papers are not shown in the tables in the Results Section as such tables 
would be unwieldy. This is similar to the approach taken by Jorgensen and Shepperd [10]. This 
utility also enables groups of prediction studies included in this report to be selected based on 
context, for example, all studies using C/C++ language and NASA data can be sourced from 
the reference section by searching for T10=2 and T11=1. 
 
3.5 Threats to validity 
 
Search terms: We do not include the term ‘quality’ in our search terms as this would have 
resulted in the examination of a far wider range of papers. This term also generates a high 
number of false positive results. However, we might have missed some papers that use the term 
‘quality’ as a synonym for ‘defect’ or ‘fault’, etc. We also omitted the term ‘failure’ from our 
search string as this generated papers predominately reporting on studies of software reliability 
in terms of the safety critical systems. Such studies of reliability predominately examine the 
dynamic behaviour of the system, and seldom look at the prediction of static code faults which 
is the focus of this review. 
 
Search strategy: By applying our search terms to only the title of papers we may miss studies 
of fault prediction that do not use these terms in the title. Dieste et al [8] report that the 
effectiveness of searches can be improved if search terms are applied to both title and abstract 
fields. However, since we extend our searches to include papers cited in the included papers, 
we are confident that all key papers are included. 
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Extracted data: It is likely that we have coded some papers incorrectly. Studies in the field of 
fault prediction are complex and data from them is often hard to extract, comprehend and 
classify. Even after considerable discussion amongst the three researchers extracting data from 
the papers there was not always total agreement on how to code what was reported in a 
particular paper. Fitting a unique study within a fixed classification scheme is therefore open to 
some interpretation. Although we have spent many hours minimising misclassifications it is 
likely that some inconsistencies remain in the data. Any misclassification should be reported to 
the authors who will update the database that they maintain on this data. Furthermore, our 
assessment of model performance can only be based on what is explicitly reported by authors of 
studies. It could be that, for example, data has been balanced or particular performance tests 
conducted, but not reported. In addition, studies occasionally use terms such as ‘accuracy’ and 
‘precision’ in a general way, rather than to describe performance measures (see Table 3). 
 
The data sets reported: It is not always clearly reported in papers whether the data analysed is 
from new or evolving systems. The basis of data sets has important implications for the type of 
metrics that should be used, as change data is highly relevant to evolving system though not 
relevant to new systems. This lack of information reported in reviewed studies limits the 
conclusions that we can draw from such studies. Also most studies assume the severity of faults 
to be equal, yet clearly some faults will be more severe than others in terms of how they affect 
the running of the system and how long they take to fix.  
 
4. Results 
 
This section presents the results obtained from our analysis in response to our research 
questions. Before we specifically address each of our research questions, we provide some 
publication information for the studies we have reviewed. 

 
 

Date published 
Approach used  

(number of studies) 
 

Machine 
Learning 

Stats Both Other Not clear Total 

2000 1 7 3 2 0 13 
2001 0 4 0 0 0 4 
2002 4 8 2 2 0 16 
2003 3 4 0 0 0 7 
2004 4 4 5 1 0 14 
2005 6 8 3 3 0 20 
2006 6 4 8 1 0 19 
2007 18 9 5 3 1 36 
2008 6 2 3 0 0 11 
2009 5 1 1 0 1 8 

       
Total 53 51 30 12 2 148 

 
Table 8. Publications by year 

 
The increase in publications shown in Table 8 indicates a strong interest in studies of fault 
prediction. This growth seems to have peaked in 2007 and started to tail off thereafter. Machine 
learning (ML) studies account for much of this growth with the number of studies that use only 
traditional statistical methods remaining fairly static over the years, but tailing off in the last 
two years of the review.  
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Table 9 shows that conference proceedings dominate publications in the area. This is perhaps to 
be expected since there are many more articles published in conferences than in Journals5. 
Appendix C gives full details of the conferences and Journals in which the papers are 
published. 

Publication Number Percentage 
 

Journal 38 26 
Conference or workshop 110 74 
   
Total 148 100 

Table 9: Publication sources 
 
4.1 The context of fault prediction models (RQ1) 
 
This question allows us to understand the environment for which the prediction model was 
developed. We examine context primarily in terms of the origin of systems and the 
programming language that the model has been developed and tested on. This contextual 
information allows us to consider the applicability and generalisability of models. 
 

Data used Number Percentage 
 

1. OSS 32 22 
2. NASA 38 26 
3. Industrial 64 43 
4. Combined 7 5 
5. Academic  3 2 
6. Not clear 4 3 
   
Total 148 100 

NB: Papers making up the data in each table are not shown. Instead each paper has a code assigned for every table in 
the paper. All codes are in the SRL reference list attached to the individual paper’s reference  

Table 10. Origin of data used in fault prediction studies 
 
Table 10 indicates that 43% of the data used in this sample comes from closed source/industrial 
systems with 22% using data from open source systems (OSS); a quarter of studies were based 
on NASA’s industrially-based projects. This shows that a relatively high proportion of data 
being used in fault prediction studies have industrial origins.  
 

Language used Number Percentage 
 

1. C/C++ 78 53 
2. Java 29 20 
3. Other* 14 9 
4. Various 9 6 
5. Not given 18 12 
   
Total 148 100 
*‘Other’ languages include Assembly, Fortran, Protel and Ada 

Table 11. Languages used in fault prediction studies 
 

                                                 
5 Though this difference may even out in the next year or two given that research trends can lag behind in Journals 
given the significantly longer publications lead times they have compared to conferences. 
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Table 11 shows that the C/C++ language dominates in the studies. Over half of the models are 
built by analysing C/C++ code and are specifically applicable to such code. Models based on 
Java code account for 20% of models. 
4.2 The variables used in fault prediction models (RQ2) 
 
This question identifies the form that model inputs and outputs take and the range of indicators 
of fault proneness used in models. 
  

Unit used Number Percentage 
 

1. Module** 64 43 
2. Class 27 18 
3. Component/unit 18 13 
4. File 15 10 
5. System 4 3 
6. Project 3 2 
7. Combination 6 4 
8. Other* 9 5 
9. Not clear 2 1 
   
Total 148 100 
*Includes field faults, programming constructs etc. 

**Granularity is classified as ‘module’ if used by authors. We do not re-interpret how the term is applied. 
Table 12. Granularity of dependent variables used 

 
Table 12 shows the granularity at which studies report they have modelled fault prediction. 
There is a range of granularity, with 43% of studies modelling faults in modules, 18% in 
classes, and a further 10% in files. The module is typically defined in these studies as a function 
or subroutine in a piece of code (though what the term ‘module’ actually defines is open to 
debate). Overall, the range of granularity and the lack of standard terminology used across 
studies make comparing across studies particularly difficult. Table 13 shows the independent 
variables used across the studies. 
 

Predictors/independent 
variables used 

Number 
(n=148) 

Percentage of 
predictors 

used 

Percentage of 
studies using 

predictors 
1. Previous fault data 35 16 24 
2. Change data 38 18 26 
3. Static code metrics 115 52 78 
4. Dynamic code metrics 4 2 3 
5. Miscellaneous* 27 13 18 
    
Total 219  100   
    

*Includes implementation of design patterns, testing and inspection metrics, qualitative data, and function points 
NB. Many studies use more than one independent variable 

Table 13. Independent variables used 
 
Table 13 shows that static code metrics (SCM) are the most common basis for fault prediction; 
78% of studies use these metrics (52% of all variables used are static code metrics). The use of 
these metrics is most common where the NASA data has been used as this includes pre-
calculated static code data. Table 14 shows this category in more detail. Table 13 also shows 
that module fault history data is used in 24% of studies (e.g. [[112]]). This indicates a belief that 
a module previously found to be faulty may continue to be faulty in the future. Dynamic (i.e. 
run-time) metrics are only used in 3% of studies in our sample (for example [[37]]). This is low 
given that dynamically executed faults are of particular relevance to users and will directly 
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impact the reliability and quality of a system. The limited use of dynamic metrics may be due to 
the difficulty in collecting this type of data but is also likely to be related to the scope of our 
search strategy6. 
 

Static code metrics Number 
(n=115) 

Percentage of 
SCMs used 

 
1 Size 29 29 
2 General  27 27 
3 Structure  17 17 
4 Complexity 23 23 
5 Other 3 3 

Total  99 99 
NB: Some studies collect more than one type of SCM  

Table 14. Static code metrics 
 
Table 14 breaks down the static code metrics used by the 115 studies using them. Table 14 
shows that a spread of measures are used, though further analysis also shows that code 1-4 is a 
very common pattern of use (this mirrors the processed metrics data provided by NASA). Table 
14 does show that the most commonly used metric is size (measured in terms of Lines of Code 
(LOC)). Complexity and structure are also frequently used metrics. Studies in the ‘general’ 
category report using static code metrics, source code metrics or product measures without 
being specific; this category also includes studies that list many metrics in the SCM class. The 
use of large sets of metrics as independent variables has been made easier by the availability of 
automated data extraction techniques such as CPP analyzer, PAMPA (e.g. [[7]]) and Code 
Surfer7 tools (e.g. [[4]]).  
 

Outputs used Number Percentage 
 

1. Categorical  79 53 
2. Continuous 40 27 
3. Both 28 19 
4. Unclear 1 1 
   
Total 148 100 

Table 15. Fault dependent variables used 
 
Table 15 shows how faults are reported by our studies. Table 15 shows that there is a bias 
towards models reporting on categorical faults (i.e. a module is either faulty or non-faulty). 
However 19% of studies model both variables. As categorical and continuous data often uses 
different performance measures, we divide the studies in this way when answering the research 
question relating to model performance.  
 
4.3 The modelling methods used in fault prediction models (RQ3) 
 
This question identifies whether models are based on statistics, machine learning or other 
approaches. The answer to this question allows us to discuss the popularity and use of particular 
modelling approaches. 
                                                 
6 ‘Failure’ and related reliability-based terms were omitted from our search strategy as we chose to focus 
on faults in static code. 
7 http://www.grammatech.com/products/codesurfer/ 
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Modelling method used Number Percent 

 
1. Machine learning 53 36 
2. Statistics 51 35 
3. Machine learning & statistics 30 20 
5. Other* 12 8 
6. Not clear 2 1 
   
Total 148 100 

*Includes change propagation; capture-recapture and ‘recency’ weighting. 
Table 16. Modelling method used  

 
   Dependent variable  
  1. Cat 

(n=79)
2. Cont 
(n=40)

3. Both 
(n=28)

4. Unclear 
(n=1) 

Total 
(n=148) 

  # % # % # % # % # % 

M
od

el
lin

g 
m

et
ho

d 

1. Machine learning 43 83 3 6 7 13 0 0 53 100 
2. Statistics 15 29 25 49 11 22 0 0 51 100 
3. Machine learning & statistics 16 53 7 23 6 20 1 3 30 100 
5. Other* 3 25 5 42 4 33 0 0 12 100 
6. Not clear 2 100 0 0 0 0 0 0 2 100 
           

*Includes change propagation; capture-recapture and ‘recency’ weighting. 
Table 17. Dependent variable and modelling method used 

 
Table 16 gives a high level view of the methods used to predict faults in the studies. Table 16 
appears to show a fairly even balance between machine learning and statistically based studies. 
However, no less than 30 studies (20%) use both machine learning and statistics. This 
proportion of studies is slightly deceiving as most of these studies are machine learning studies 
which also use statistics to differentiate between the performances of several machine learners. 
This means that the number of machine learning studies could be interpreted as higher than the 
stated 53 (35%). 
 
Table 17 shows the relationship between the dependent variable and the method used. It shows 
that 83% of machine learning studies report categorical data with 13% reporting both 
categorical and continuous data. Studies based on statistical methods report 49% continuous 
data with the remainder reporting either categorical or both types of data.  
 

Approach used Number 
(n=83 studies) 

Percentage 
of approaches 

used 
1. Statistical classifiers 36 24 
2. Nearest neighbour methods 12 8 
3. Neural networks 24 16 
4. Support vector machine-based  8 5 
5. Decision tree approaches 28 19 
6. Ensemble methods 11 7 
7. Misc 31 21 
   
Total 150 100 

Table 18. Classification of machine learning approaches  
 
Table 18 shows the type of classification approaches that the 83 studies using machine learning 
employ (these 83 studies are made up of the 53 that use only machine learning together with the 
30 that use both machine learning and statistical methods). Table 18 shows that a spread of 
classifiers is used. Statistical classifiers are most popular but decision tree approaches and 
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neural networks are also fairly common. Table 18 also shows that 150 classifiers are used by 83 
studies. This shows that many studies use more than one classifier and it is quite common for 
studies to compare the performance of a variety of learners (e.g. [[4]]). 
 

Statistics used Number 
(n=81 studies) 

Percentage 
 

1. Regression 46 47 
2. Compare means 7 7 
3. Correlation 14 15 
4. Feature selection 9 9 
5. Descriptive stats 5 5 
6. Other 16 16 
   
Total 97 100 

 
Table 19. Statistical methods used 

 
Table 19 shows the statistical methods used by 81 studies (50 based only on statistical methods 
and 31 based on using machine learning and statistical methods). Table 19 shows that by far the 
most popular approach is regression, almost half of the studies are based on using some form of 
regression. Table 19 also shows that fewer statistically based studies use multiple methods, with 
97 methods being used by 81 studies. 
 
4.4 Measuring the performance of fault prediction models (RQ4) 
 
The studies use a variety of either statistically or machine learning based measures to test the 
reliability of their results. To analyse these, we divide the studies into whether they report 
categorical or continuous faults. This is a simplified division as only 25 (49%) statistical studies 
(Table 17) report only continuous data. Many other studies use both statistical and machine 
learning methods and report continuous and categorical data and the performance indicators 
used by these studies is also shown.  
 

Performance Indicator 
 

Continuous studies  
(n=40) 

Studies using both 
continuous and 
categorical data 

(n=28) 
Number Percent Number Percent 

4. Error rates (MRE,MAE etc) 13 33 7 32 
5. Regression coefficient 12 30 6 27 
6. Correlation test 8 20 5 23 
7. Variance significance test 6 15 3 14 
9. Other  1 3 1 5 
 
Total (studies may use more than one or none) 40 100 22 100 

Table 20. Performance measures used in studies using continuous data 
 
Table 20 shows that a range of tests used to demonstrate the performance of models based on 
continuous output data. This range corresponds with the range of methods used and the tests 
necessary for those methods. Table 20 shows that the use of error rates are most popular 
followed by regression coefficients. These results correspond to the use of regression by 47% of 
statistical studies as shown in Table 19.  
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Performance Indicator 

 
Categorical studies  

(n=79) 
Studies using both 

Categorical & 
Continuous data 

(n=28) 
Number Percent Number Percent 

1. Confusion Matrix related composite measures 53 59 16 76 
2. Confusion Matrix constructs 32 41 5 24 
 
Total (studies may use more than one or none) 85 100 21 100 

Table 21. Performance measures used in categorical studies 
 
Table 21 shows the performance measures used by categorical studies. It shows that many 
confusion matrix composite measures and constructs are reported by papers. Almost all studies 
reporting categorical data use at least one of these performance indicators. However, the range 
of measures that can be used and the combinations selected by authors is large. This makes 
comparing performance across categorical studies particularly difficult. This problem is 
compounded with some studies reporting the performance of their model without explicitly 
describing the performance indicators on which this performance is based (for example 
[[115]]).  
 

 Categorical studies 
(n=79) 

Is a confusion matrix provided? # % 
   
1. Yes 11 14 
2. No 68 86 
   
Total 79 100 

Table 22. Provision of a confusion matrix 
 
Comparison of categorical model performance is more practical with the provision of a raw 
confusion matrix. Table 22 shows that not many studies explicitly provide the raw confusion 
matrix. Most categorical studies have probably produced a confusion matrix in order to 
calculate indicators such as recall or balance, but authors have not reported this. However, with 
multiple validation techniques being used this may not be possible (a single experiment with 
stratified 10-fold cross validation repeated 1000 times on one dataset may yield typically 
10,000 individual matrices). The provision of this raw data would be very useful for future 
researchers and potential users of models as it significantly simplifies comparison across 
studies. Pizzi et al [[133]] provide a very usable format for presenting a confusion matrix.  
 
 

 Data used 
 Categorical Both Total 

Data balancing applied? # % # % # % 
       
0. Data already balanced 2 3 0 0 2 2 
1. Yes 9 11 3 11 12 11 
2. No* 68 86 25 89 93 87 
       
Total 79 100 28 100 107 100 

* We also include studies where it is not clear that balancing has been done 
Table 23. Data balancing used in categorical studies 

 
Table 23 shows explicit data balancing has been applied by categorical studies and studies 
using both categorical and continuous data. Table 23 shows that 12 of 107 of these studies are 
based on balanced data sets. This suggests that the vast majority of studies either base their 
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predictions on imbalanced data or else do not report the data balancing that they have applied. 
Although data balancing is most important for studies reporting categorical data, some studies 
reporting continuous data also report that they balanced the data (for example [[3]]). 
 

 Accuracy or error 
rate reported 

Data balancing applied? # % 
   
0. Data already balanced 1 3 
1. Yes 8 22 
2. No* 28 76 
   
Total 37 100 

* Included are studies where it is not clear that balancing has been done 
Table 24. Use of the accuracy performance measure and data balancing 

 
The importance of balanced data is related to the performance indictors used. Balanced data is 
particularly important to the credibility of studies which report model performance in terms of 
accuracy or error rate. Table 24 shows studies explicitly reporting model performance in terms 
of accuracy and error rate in relation to data balancing. Table 24 shows that only 9 of the 37 
studies (25%) reporting model performance in terms of accuracy are based on balanced data 
sets. 
 

   Cross-validation reported? 
  Yes No Total 

  # % # % # % 

M
et

ho
ds

 1. Machine learning 26 47 27 53 53 100 
2. Statistics 10 20 41 80 51 100 
3. Machine learning & statistics 24 77 6 23 30 100 
       

* Total is not 148 as studies using ‘other’ methods or where methods are not clearly stated are excluded 
Table 25. Validation used in categorical studies 

 
Table 25 shows how often cross-validation is explicitly reported in studies (for example the use 
of 10-fold cross validation). Cross-validation is most relevant to improving the internal validity 
of machine learning models, but also can be applied to improve the robustness of statistical 
models. Table 25 shows that under half of machine learning studies report applying cross-
validation. It may be that studies perform cross-validation but do not explicitly report doing so. 
Very few studies address the external validity of their model, an example that does is [[73]]. 
 
5. Discussion 
 
In this section we comment on the implications of what we found in response to our research 
questions. Overall, the results reported in the papers highlight the many different approaches 
taken to tackle the problem of producing accurate, reliable and credible fault prediction models. 
The amount of difference in approaches makes it difficult to compare across studies. This 
problem is well documented with, for example Runeson et al (2006) noting that “comparing 
studies is difficult” due to differences in fault types, the few faults found in many studies and 
subjective classifications of faults.  
 
5.1 Model context (RQ1) 
 
Although the number of papers reporting fault prediction models seems to be decreasing, the 
sophistication of papers has improved. For example, many more papers are now aware of the 
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complexity of measuring the performance of models and are addressing model performance 
more credibly (for example, Arisholm et al [2] is published just beyond our cut off date but is 
an excellent example of a thoroughly mature approach). 
 
NASA’s publicly available software metrics data have proved very popular in developing fault 
prediction models. And has the advantage that researchers are able to replicate and compare 
results using different approaches based on the same data set. However, although the repository 
holds many metrics and is publicly available, it is not possible to explore the source code or 
trace back how the metrics were extracted. It is also not always possible to identify if any 
changes have been made to the extraction and computation mechanisms over time. A further 
concern is that the data may suffer from ‘noise’ [[44]]. It is also questionable whether a model 
that works well on the NASA data will work on a different type of system; as Menzies et al. 
[[62]] point out, NASA works in a unique niche market developing software which is not 
typical of the generality of software systems, though Turhan et al [[144]] have demonstrated 
that models built on NASA data are useful for predicting faults in washing machines.  
 
Although it is generally agreed that model performance varies across different software 
engineering contexts (e.g. [[67]]), there are a few exceptions to this. For example, Bellini et al 
[[7]] found a metric based on a  count of different data structures that was not dependent on the 
project. Zhou and Leung [[107]] examined relationships between OO design metrics and fault-
proneness of classes and agreed with other researchers that the Chidamber and Kemerer [7] 
Metrics: Weighted Methods for Class (WMC), Response For a Class (RFC), Coupling between 
Objects (CBO) were almost consistently found to be statistically significant to fault-proneness 
of classes. 
 
5.2 Model variables (RQ2) 
 
Our results show that researchers are still struggling to find reliable and useful metrics as an 
input to their fault prediction models. Researchers continue to search for predictor variables that 
correlate to faults independent of project context. Others suspect that the relationship between 
software metrics and faults is not strong enough for accurate predictions (e.g. [[48]]). Fenton 
and Ohlsson [[24]] question the wide use of complexity metrics, and believe that ‘there is still 
no conclusive evidence that such crude metrics are better predictors of fault-proneness than 
something as simple as LOC.…”.  Our results indicate that simple LOC are not always a 
reliable predictor of fault-proneness, for example [[47]], especially when used as the only 
predictor. Indeed, it is unlikely that any universal predictor for software faults that works for all 
software projects exists. The metric that performs best will always depend on the context. 
However we remain some distance from determining which model is most general, i.e., that 
works in most situations. 
 
Our results show a wide variation in code granularity on which models are based. This makes 
comparing across studies complex and may make it difficult to repeat studies. Furthermore, a 
definition of granularity is seldom given in papers. For example, many studies are based on 
predicting faults in ‘modules’ though the definition of ‘module’ is not often given and when it 
is, varies enormously.  
 
5.3 Modelling approaches (RQ3) 
 
In our sample we found that Machine Learning (ML) methods are increasing. It could be that 
this increase is due to the methodological problems found in the more traditional statistical 
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approaches [9], or the increasing availability of easy to use data mining tools such as Weka 
(http://www.cs.waikato.ac.nz/ml/weka/) and LibSVM (http://www.csie.ntu.edu.tw/~cjlin/ 
libsvmtools/). However, despite the substantial level of research activity and the many different 
models developed in the area of fault prediction, there is still no consensus in the research 
community as to which approach is most applicable to specific environmental circumstances 
([14] and [1]). Furthermore, the use of such approaches in this context is not yet mature. Many 
studies focus on comparing the performance of a wide variety of machine learners. While many 
researchers report in detail how predictive performance is influenced by the various calibrations 
of machine learners. Menzies et al [[135]] have recently cast doubt on the value of continuing 
to seek improved fault prediction performance via the increasing calibration of machine 
learners. They report that a ceiling on the performance of machine learners in this domain has 
now been reached.     
 
5.4 Measuring model performance (RQ4) 
 
Meta-analysing the performance of fault prediction models is very challenging. In this section 
we discuss the many factors contributing to this problem (the terms used are described in Table 
3 in the Background Section).  
 
The use of multiple measures. Many studies report multiple performance measures produced 
using multiple methods. This makes any meta-analysis of models a complex issue and 
impractical across all fault prediction models. This presentation of multiple measures is 
probably related to the use of tools like Weka which do this automatically. While this may add 
internal validity to individual studies, it is unclear how to extend these results to improve 
confidence in their external validity. 
 
Lack of standardisation. The current lack of standardisation in reporting the performance of 
fault prediction models means that it is often difficult to interpret which performance measures 
have actually been used and to identify the contextual information. For example, it is not 
always apparent whether the data has been balanced or whether it is necessary to do so; lacking 
such information means we cannot be certain of the reliability of measures. In addition, basic 
information about model performance is often not provided in studies. This makes it practically 
impossible to compare model performances across studies. In particular the omission of raw 
confusion matrices makes it problematic to compare the fundamental performances of models. 
Although finding a way to present potentially multiple confusion matrices is a challenge for 
researchers. Khoshgoftaar [[147]] has provided a suggested way of doing this.  
 
The selection of performance measures. Selecting appropriate performance measures is 
complicated and some measures may be better than others at reflecting how well a model 
performs in a particular context. Indeed, the use of a particular performance measure can be 
misleading and seemingly inflate or deflate a model’s performance. For example, 55% accuracy 
on a balanced data set may imply a higher level of predictive performance than 99% accuracy 
on an imbalanced data set, even though the latter sounds more impressive. A more extreme 
example is a model that simply states that all units are non-faulty and can achieve 80% 
accuracy for a system in which 20% of the units were actually faulty.  In these situations even 
though precision and recall decrease, accuracy might increase (or vice versa).  
 
Categorical studies reporting accuracy or error rate/misclassification rate (=1-accuracy) figures 
for imbalanced test sets do not tell the reader anything useful about the model’s performance. 
Such papers should be treated with caution - when dealing with data that is imbalanced such 
measures typically present no information about the ability of the model to detect faults.  
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Even when the data is balanced and accuracy is reported, it still may not be the most 
appropriate performance measure to report because these measures do not take into account the 
cost of mis-classification. This cost can be a significant issue in safety critical software 
engineering domains. Contextual factors must be considered when selecting appropriate 
performance measures, for example the cost of a fault escaping discovery. For critical faults, 
like security faults, the escape cost is high. In this context a manager might want to have high 
recall but can live with lower precision. For arbitrary faults, a manager might want higher 
precision. Ultimately cost should be considered in the performance measure. We found few 
studies consider such issues, those that do include [[3]].  
 
Our results suggest that it is only relatively recently that the complexity of these issues in the 
selection of performance measures is being addressed with some notable papers showing 
increasing maturity. Improved understanding of how performance measures behave is also 
contributing to this growing maturity, for example Menzies et al [48] show that the values of 
precision vary greatly when validating models across different data sets.  
 
Data balancing.  
Our findings show that not all papers mention class distributions and the problem of working 
with ‘imbalanced’ datasets have yet to be resolved. The analysis of imbalanced data is 
frequently performed in the machine learning community as well as the general software 
engineering community with some datasets having as few as 0.4% defective modules (MDP 
dataset PC2). However such data should be used with caution. As explained in [[147]], the 
baseline for comparing performance could be ‘does the model do better than predicting the 
majority class?’ This would be a way of determining if the model is telling us something new 
and would discount the apparent ‘excellent’ and potentially spurious findings of some papers. 
However [[139]] argues that it is the minority class (defective) which we are most interested in 
and a ‘predict majority class’ model is not particularly useful.  

In an ideal world, data mining models should be trained on data sets that have an equal number 
of each output class (i.e. an equal number of defective and non-defective modules) since this is 
commonly what the default algorithms expect. Some studies ([[82]], [[118]]) have taken steps 
to achieve balanced data using techniques such as over-sampling or under-sampling. 
Unfortunately, these techniques can add problems by reducing the number of tuples in the 
training set (under-sampling) or create zero existent tuples or duplicate tuples (over-sampling). 
When the data is balanced, the performance measure of accuracy can be applied with some 
meaning, however accuracy should not be used in conjunction with imbalanced data as 
demonstrated by [[147]].   

Statistical significance. Not all of the studies include reports of statistical significance tests. 
Our review supports the previous findings of Lessmann et al. [[51]] that “statistical hypothesis 
testing has only been applied to a very limited extent in the software fault prediction literature. 
…. it is standard practice to derive conclusions without checking significance”. It is not reliable 
to draw conclusions merely on observed differences because the differences might have been 
caused by chance alone [1]. This means that it is not possible to be sure of the significance of 
the results obtained in over half the papers in this study. That said, there are some valuable 
studies reporting insignificant statistical results (e.g. [[112]], [[24]]). These studies contribute 
important information since while it is useful to learn about methods that are successful, it is 
also essential to understand what does not work; this information will save time in future fault 
prediction studies.  
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Validation. The credibility of a model’s reported performance also depends on whether it has 
been externally or internally validated. Very few studies apply their model in a variety of 
settings, and those that do have variable results. Our knowledge of how well these models 
perform outside their given domain is limited. Our findings support Challagulla et al. 's [[17]] 
view that there remains a predominant focus on internal validity and a general failure to 
demonstrate external validity. 
 
6. Conclusions 
 
This review shows that many fault prediction models have been published in the last ten years. 
These models are heterogeneous and come in all shapes and sizes. A wide range of statistical 
and machine learning approaches are used to build models. An encouragingly high proportion 
of studies have been developed using industrial data, with OSS data also featuring strongly. 
Many studies use the publicly available NASA data. A wide variety of independent variables 
have been used in models, the most common of which fall into categories such as static code 
metrics, change metrics and previous fault metrics. However, there is no clear ‘best’ indicator 
of fault proneness emerging from studies, with indicators performing differently across 
different studies. Independent variables such as lines of code, complexity metrics, process 
metrics, module size, age of file were strongly correlated to faults in some studies but had no 
correlation to faults in others. This suggests that there is no single ‘best’ approach to predicting 
faults across all problem domains. The challenge remains to identify the context variables that 
determine a model’s applicability.  
 
The current state of the literature makes it complex and difficult to evaluate models. This is 
likely to be a barrier to practitioners implementing these models and makes the meta-analysis of 
model performance across the whole literature currently infeasible. A number of separate meta-
analyses of segments of the literature may be possible. However, even this is a challenge given 
the wide range of performance indicators used by studies and the inter-dependence of these 
with other factors in the model.  
 
Currently there is no standardised way of presenting essential model building data. This makes 
it more difficult to evaluate the performance of a model as essential raw data (for example 
confusion matrix data) is often not reported. Other data is presented differently across studies 
(for example accuracy) and some studies do not give the basis of the measures used to measure 
performance. Although our review suggests that fault prediction modelling is maturing, there 
remain many methodological anomalies and omissions in the majority of published studies. 
This makes it difficult for researchers to accurately replicate previous studies or to transparently 
build on previous studies. Maturity in the area seems to be slower than it could be as not all 
studies build on the good practices of previous work.  
 
To encourage the uptake of such good practices we are currently preparing comprehensive 
guidelines for the design and presentation of fault prediction studies in software engineering. 
These recommendations are based on the findings we report in this paper and should go some 
way towards helping researchers to provide studies that can be more effectively built on in the 
future.  
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Appendices 
 
Appendix A: Search string 
 
The following search string was used in our searches: 
 
(Fault* OR bug* OR defect* OR errors OR corrections OR corrective OR fix*) in title only  
AND (Software) anywhere in study 
 
Appendix B: Conferences and journals manually searched 
 
 

Conference manually searched 
 

Journals manually searched 
 

International Conference on Software Engineering (ICSE) IEEE Transactions of Software 
Engineering 

International Conference on Software Maintenance (ICSM) Journal of Systems and Software 
IEEE Int’l Working Conference on Source Code Analysis 
and Manipulation (SCAM) 

Journal of Empirical Software Engineering 

International Conference on Automated Software 
Engineering 

Software Quality Journal 

IEEE International Symposium and Workshop on 
Engineering of Computer Based Systems  

Information & Software Technology 

International Symposium on Automated Analysis-driven 
Debugging  

 

International Symposium on Software Testing and Analysis 
(ISSTA) 

 

International Symposium on Software Reliability 
Engineering  

 

ACM SIGPLAN Conference on Programming language 
Design and Implementation 

 

Int’l Workshop on Mining Software Repositories  
Empirical Software Engineering & Measurement  
PROMISE  
Foundations of Software Engineering   
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Appendix C: Publication Sources 
 

Journals  
(where more than 1 study has been published) 

Number of 
included studies 

IEEE Transactions on Software Engineering 17 
Empirical Software Engineering 5 
Journal of Systems and Software 5 
Journals where only 1 study published 11 
Total 38 
 
Proceedings  
(where more than 1 study has been published)  
Automated Software Engineering, Int'l conference on 4 
Computer Software and Applications Conference (COMPSAC), Int'l conference  2 
Empirical Software Engineering and measurement, Int' Symposium on  8 
European Conference Software Maintenance and Reeng. (CSMR), Proc. of 3 
Euromicro conference 3 
Foundations of SE, Int'l symposium on 2 
High-Assurance Systems Engineering (HASE), International Symposium on  4 
Mining software repositories, International workshop on  3 
Neural networks (IJCNN), International conference on 2 
Predictor Models in Software Engineering (PROMISE), Int'l workshop on  4 
SIGPLAN SIGSOFT 10 
Software Engineering, Int'l Conference (ICSE) 10 
Software Maintenance, Int'l Conf on (ICSM) 3 
Software Reliability Engineering, Int'l conference on (ISSRE) 12 
Software Testing and analysis, Int'l Symposium on (ISSTA) 2 
Conferences where only 1 study published 38 
 
Total 110 

 
Appendix D. Classification of static code metrics 
 

1 Size LOC/size (incl comments per LOC etc) 
2 General Various general SCMs listed (often many used), typically metrics 

data available from NASA datasets 
3 Structure Including  coupling, cohesion and inheritance, system architecture, 

CK metrics 
4 Complexity Includes Halstead and McCabe 
5 Other Includes code clones (code fragments and language constructs) 

variables/types of statements (e.g. global variables, incoming and 
outgoing variable accesses, ’var’ statements, ‘retrieve’ statements 
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Appendix E: Statistics used in fault prediction studies 
 
Statistical approach Approach includes 

 
1. Regression • Negative binomial.  

• Poisson regression/zero-inflated Poisson regression, Loglinear regression, 
Bernoulli regression, regularised logistic regression, logistic regression 
(including stepwise and exact), binary logistic regression, risk coefficient 

• Linear regression, generalized linear regression, multiple regression, multiple 
linear regression,  

• Non-linear regression, non linear least squares regression 
• logarithmic, exponential models 
• Univariate modelling 
• Multivariate modelling 

2. Compare means/variances/ 
significance test 

t-statistic, t-test, ANOVA, F-Test, discriminant analysis, variance inflation factor, 
chi-square 

3. Correlation Spearman/Spearman’s rank correlation, Pearson correlation/Pearson product-
moment correlation, Kendall’s rank correlation, Bravais, scatterplots, 

4. Feature/model selection Principal component analysis (PCA), Akaike Information Criterion 
5. Descriptive stats Mean, standard deviation, confidence interval, median, inter-quartile range, 

percentage 
6. Other Impact analysis, pairwise intersections, Cox proportional hazards, Varimax 

rotation, Alberg diagram 
 
Appendix F: Lessman classification scheme used to classify type of machine learning 
approach used in studies  
 

Classification model Approaches included 
 

1. Statistical classifiers • Linear Discriminant Analysis 
• Quadratic Discriminant Analysis 
• Logistic Regression 
• Naïve Bayes 
• Bayesian Networks 
• Least-Angle Regression 
• Relevance Vector Machine 
 

2. Nearest neighbour methods • kNearest Neighbour 
• K-Nearest Neighbour 
 

3. Neural networks • Multi-Layer Perceptron 
• Radial Basis Function Network 
 

4. Support vector machine-based • Support vector machine 
• Lagrangian 
• Least Squares SVN 
• Linear Programming 
• Voted Perceptron 
 

5. Decision tree approaches • C 4.5 Decision Tree 
• Classification and Regression Tree 
• Alternating Decision Tree 
 

6. Ensemble methods • Random Forest 
• Logistic Model Tree 
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Appendix G: Classification of how studies balance data 
 

Data balancing used
 

Approach Description 
0 Data already balanced The data set contained a balanced set of 

faulty as opposed to non-faulty modules 
1 True balancing of data  Use of over/under sampling methods, 

SMOTE, etc to achieve a 50/50 split of 
faulty v non-faulty code units 

2 No explicit data balancing 
done  

Imbalanced data used; no balancing 
reported; statistical techniques applied 

 
Appendix H. Classification of how categorical studies have measured model performance 
 

Performance Indicator 
 

Examples 

1. Confusion Matrix related 
composite measures 

F-measure, Recall, Precision, Accuracy, misclassification 
rate/error-rate, Sensitivity, Specificity, pd, pf, Balance, 
correctness, completeness, AUC (ROC) 
 

2. Confusion Matrix constructs Rates of: FP, TN, FN, TP 
Type I = false positive (FP); Type II = false negative (FN) 
 

 
Appendix I. Classification of how continuous studies have measured model  
performance 
 

Performance Indicator 
 

Examples 

Error rates  MRE, MAE, PRED, standard error, absolute error, jack-
knife error etc) 
 

Regression coefficient 
 

Best R ~/R2 

Correlation test Pearson, Spearman 
 

Variance significance test t-test, F-test, goodness of fit, chi square, p-value 
 

Other  Theil forecasting stat 
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