

A Systematic Review of Fault Prediction
approaches used in Software Engineering

Sarah Beecham
Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland

Tracy Hall
Brunel University

David Bowes
University of Hertfordshire

David Gray
University of Hertfordshire

Steve Counsell
Brunel University

Sue Black
University College London

Contact

Address Lero
International Science Centre
University of Limerick
Ireland

Phone +353 61 233799
Fax +353 61 213036
E-Mail info@lero.ie
Website http://www.lero.ie/

Copyright 2010 Lero, University of Limerick

This work is partially supported by Science Foundation Ireland
under grant no. 03/CE2/I303-1

Lero Technical Report Lero-TR-SPL-2008-01Lero Technical Report Lero-TR-2010-04

 1

A Systematic Review of Fault Prediction Approaches
used in Software Engineering

Sarah Beechama, Tracy Halla, David Bowesc, David Grayc, Steve Counsella, Sue Blackd

aLero, The Irish Software
Engineering Research
Centre,Univ of Limerick,
Limerick, Ireland

bBrunel University,
Uxbridge, Middlesex,
UB8 3PH
UK

cUniversity of Hertfordshire,
Hatfield, Hertfordshire,
AL10 9AB
UK

dUniversity College London,
Gower Street, London,
WC1E 6BT
UK

Email: sarah.beecham@lero.ie; [tracy.hall; steve.counsell]@brunel.ac.uk;
[d.h.bowes; d.gray]@herts.ac.uk; s.black@cs.ucl.ac.uk

Abstract

BACKGROUND – The accurate prediction of where faults are likely to occur in code is important
because it can help direct test effort, reduce costs and improve the quality of software.
OBJECTIVE – To summarise and analyse the published fault prediction studies in order to identify
approaches used to build, measure and validate the performance of fault prediction models.
METHOD – A systematic literature review of fault prediction in 148 studies published from
January 2000 to December 2009. Studies are classified in terms of their context, the variables and
methods used to build models as well as how the performance of a model is measured and validated.
RESULTS – An increasing number of studies use machine learning approaches to predict where
faults are likely to occur in code. These use a wide variety of methods to build models. Fault
prediction models are based mainly on static code metrics, change data and previous fault data. The
performance of models is measured in a range of ways that makes cross comparison very complex.
The external validation of models is rarely demonstrated. Models reporting very high performance
measures (eg. over 90%) need to be treated with particular caution.
CONCLUSION – The literature in this area is just beginning to mature with a small but growing
number of studies appearing that transparently report models built using rigorous techniques; the
performance of these models have been measured in credible ways. However, many studies do not
present their methods clearly enough to enable the performance of their models to be convincingly
demonstrated. A more standardised way of building and reporting on such performance is needed
before potential model users can confidently evaluate these studies.

1. Introduction

This systematic literature review (SLR) aims to identify and analyse the models used to predict
faults in source code in papers published over 10 years (between January 2000 and December
2009). The output from the review is a summary and evaluation of how studies have developed,
used and validated models for fault prediction in software engineering. Many important aspects
of model construction are analysed and a rigorous starting point in the area is provided for
future researchers. This paper also provides a comprehensive entry point for practitioners
preparing to use fault prediction models.

Fault prediction is a complex area of research and the subject of many previous studies.
Software practitioners and researchers have explored various ways of predicting where faults
are likely to occur in software to varying degrees of success. These studies typically produce
fault prediction models that allow software engineers to focus development activities on fault-
prone code, thereby improving software quality and making better use of resources. However, it

 2

is difficult to get an overall picture of the current state of fault prediction, given the disparate
nature of the individual models published.

Two previous reviews of the area have been performed ([9] and [4])1. Our review differs from
these reviews in the following ways:

- Timeframes. Our review is the most contemporary as it includes studies published from
2000-2009. Fenton and Neil conducted a critical review of software fault prediction
research up to 1999 [9]. Catal and Diri’s [4] review covers work published between
1990 and 2007.

- Systematic approach. We follow Kitchenham’s [12] original and rigorous procedures
for conducting systematic reviews. Catal and Diri did not report on how they sourced
their studies stating that they adapted Jørgensen and Shepperd's [10] methodology.
Fenton and Neil did not apply the systematic approach introduced by Kitchenham [12]
as their study was published well before these guidelines were produced.

- Comprehensiveness. We do not rely on search engines alone and, unlike Catal and Diri,
we read through relevant journals and conferences paper-by-paper. Consequently, we
analyse many more papers and include 74 papers which do not appear in Catal and
Diri’s review. Beecham et al [3] reports a paper-by-paper analysis of our SRL
compared to Catal and Diri’s.

- Analysis. We provide a more detailed analysis of each paper. Catal and Diri have
focused on the context of studies including: where papers are published, year of
publication, types of metrics used, datasets and approach. In addition, we report on how
the performance of models is measured and how models are validated.

This paper is organised as follows. In the next section, we provide some background to fault
prediction. Section 3 presents our systematic literature review methodology. Section 4 contains
the results of the papers we reviewed. A discussion of our results is presented in Section 5.
Section 6 concludes the study.

2. Fault prediction modelling

Fault2 prediction modelling has become a popular method for the early identification of fault-
prone code. It is now the topic of a large body of software engineering literature. In this section
we discuss factors which underpin the development of a prediction model likely and present
basic recommendations relating to principles of measuring the performance of such models.

2.1 Developing a fault prediction model

Developing a reliable fault prediction model requires a number of model building concepts to
be appropriately addressed. These concepts must be taken into account when reviewing models
of fault prediction. These essential model building concepts include:

1. Predictor or independent variables. These are usually metrics based on software
artefacts, such as static code metrics or change data, and are usually features that enable

1 Note that two referencing styles are used throughout this paper, [ref#] refers to papers in the main reference list
while [[ref#]] refers to papers in the separate systematic literature review list which is located after the main
reference list.
2 ‘Fault’ is used interchangeably in this study with the terms ‘defect’ or ‘bug’ to mean a fault in software code.

 3

some degree of fault prediction. This review is scoped to those models using
independent variables based on units of code, such as files, classes or modules of code.

2. Output or dependent variables. The output from the model is a prediction of fault

proneness in terms of faulty versus non-faulty code units. This output typically takes
the form of either categorical or continuous output variables. Categorical outputs
classify code units as either faulty or non-faulty. Continuous outputs usually provide
the number of faults in a code unit3.

3. Modelling methods. One or more modelling methods are used to explore the

relationship between the predictor variables (or independent variables) and the outputs
(or dependent variables). These methods may be, for example, types of statistic like
regression or machine learning.

2.2 Measuring the performance of prediction models

Measuring the predictive performance of models is an essential part of model development and
subject to on-going debate in the literature. We base the following overview of performance
measures on work by Arisholm et al [2], Ostrand & Weyuker [15] and Lessman et al [[51]].

Reporting performance is often based on the analysis of data in a confusion matrix as shown in
Table l and explained further in Table 2. This matrix reports how the model classified the
different fault categories compared to their actual classification (predicted versus observed).
Many performance measures are related to components of the confusion matrix shown in Table
2. These components can be either within a confusion matrix or used individually. Confusion
matrix measures of performance are most relevant to fault prediction models producing
categorical outputs, though continuous outputs can be converted to categorical outputs and
analysed in terms of a confusion matrix.

 Predicted defective Predicted defect free
Observed defective True Positive (TP) False Negative (FN)
Observed defect free False Positive (FP) True Negative (TN)

Table 1. A confusion matrix

Construct Also known as Description

False Positive FP, and Type I Error Classifies non faulty unit as faulty

False Negative FN, and Type II Error Classifies faulty unit as not faulty

True Positive TP Correctly classified as faulty
True Negative TN Correctly classified as non faulty

Table 2. Confusion matrix based performance indicators

Composite performance measures can be calculated by combining values from the confusion
matrix (see Table 3).These measures are most suitable when using imbalanced data as they are
proportional to the class distribution (where code is viewed in two classes – faulty or non

3 This binary division into continuous or categorical oversimplifies model outputs as, for example the output of a
logistic regression is a probability of faultiness and it is only the cut-off value used that converts this into a
categorical classification [[51]].

 4

faulty). ‘Recall’ (otherwise known as the true positive rate, probability of detection (pd) or
sensitivity) describes the proportion of defective code correctly predicted as such, while
‘Precision’ describes how reliable a defective prediction is, or, more specifically, what
proportion of code predicted as defective actually was faulty. Both are important when
modeling with imbalanced data, but there is a trade-off between these two measures [[146]].
Furthermore, particular requirements may favour one measure over another. For example,
safety critical systems may be more interested in recall in order to catch as many defects as
possible; business systems on the other hand may be more interested in precision. To remain
competitive, business system development cannot afford to spend lots of time on testing as they
need to release their product while business demand is high. An additional composite measure
is the false positive rate (pf) which describes the proportion of erroneous defective predictions.
Thus, the optimal classifier would achieve a pd of 1, precision of 1 and a pf of 0.

The performance measure balance combines pd and pf, a high balance value (near 1) is
achieved with a high pd and low pf. Balancing can also be adjusted to factor in the cost of false
alarms which typically do not result in fault fixes.

Some machine learners have parameters that may be altered (e.g. a decision threshold) that
results in different combinations of pd and pf. When the combinations of pd and pf are plotted
they produce a Receiver Operator Curve (ROC). This gives a range of balance figures, and it is
usual to report the area under the curve (AUC) as varying between 0 and 1, with 1 being an
ideal value. However, some learners produce low AUC values but when tuned can produce
high balance values.

Construct Defined as Description

Recall
pd (probability of detection)
Sensitivity
True positive rate

TP / (TP + FN)

Proportion of faulty units correctly
classified

Precision TP / (TP + FP) Proportion of units predicted as faulty
pf (probability of false alarm)
False positive rate

FP / (FP + TN) Proportion of non faulty units
incorrectly classified

Specificity

TN / (TN + FP) Proportion of correctly classified non
faulty units

 f-measure (2 x Recall x Precision) /
(Recall + Precision)

Most commonly defined as the
harmonic mean of Precision and
Recall

Accuracy (TN + TP) / (TN + FN + FP +
TP)

Proportion of correctly classified units

Mis-classification rate
Error-rate

1-accuracy Proportion of incorrectly classified
units

Balance
2

)1()0(
1

22 pdpf
balance

−+−
−=

Combines pf and pd into one
measure and is most commonly
defined as the distance from the ROC
‘sweet spot’ (where pd=1, pf=0).

Receiver operating
characteristic (ROC) curve

 A graphical plot of the sensitivity (or
pd) vs. 1 – specificity (or pf) for a
binary classification system Where its
discrimination threshold is varied

Table 3. Composite performance measures

 5

Table 4 shows the other ways in which the performance of a model can be measured. Such
measures can be used in models that produce either categorical or continuous outputs. Fault
prediction studies often report several different performance indicators as the tools commonly
used (e.g. Weka4) produce them automatically. However, the efficacy of the measure used
depends on many aspects of the study and must be interpreted within the wider context of the
study. Correct interpretation of model performance depends on many factors and requires a
good understanding of data that contextualises the study. Often such context data is not reported
or is presented ambiguously. Data balance (class distribution) in particular makes a significant
difference to how some performance measures should be interpreted.

Measure Constructs and Definitions

Completeness or effectiveness

% of faulty classes detected, proportion of total faults detected

Correctness

% of classes correctly predicted as faulty

Descriptive statistics % of bugs found in system, Standard Dev, Mean, t-test,
ranking, variance, z

Error measures Relative error, Relative square error, standard error of
estimate, Root mean squared error, median relative error,
mean square error, mean absolute error, mean absolute
relative error, error rate.

Regression coefficients Regression - logistic, Regression R2 (linear) - incl derived co-
efficients, Regression R2 (nonlinear), cubic r2

Significance Usually described in terms of p-value,for example p ≤ 0.05

Table 4. Performance indicators defined

With the use of some performance indicators (in particular accuracy and error rate) data
balancing (or class distribution) can be fundamental to developing reliable prediction models
for categorical outputs. Most initial sets of fault data are significantly imbalanced with many
more non faulty code units occurring in the data set than faulty units. Without model developers
deliberately using over/under sampling methods (e.g. [6]) to balance the two classes of data,
model predictions may be unreliable. In particular, machine learning (ML) classifiers are often
unable to detect faulty modules since the majority of modules they learn from tend to be fault-
free. Sun et al [18] note in their study using Support Vector Machines that “since the dataset is
imbalanced, the [classification approach] will be expected to over-predict the majority class”.
Studies reporting model performance in terms of accuracy and which pay no regard to data
balance, may report a significantly inflated model’s performance. However discussion
continues about the interplay between data balance and model performance indicators (see
[[105]], [[113]], [3], [11]).

Demonstrating the validity of fault prediction models is essential. In the context of gaining
insight into how well a defect predictor could perform on future projects, a model is only valid
if it is tested on unseen data (i.e. data that was not used during the training process) [[62]]. The
holdout validation technique is one way of demonstrating the internal validity of models. It is
most relevant to machine learning approaches, but can also be applied to improve the
robustness of results in statistical studies. With holdout experiments, the original data set is split
into two groups: {training set, test set}. The model is developed using the training set and its

4 Available at: http://www.cs.waikato.ac.nz/~ml/weka/index_downloading.html

 6

performance is then assessed on the test set. As with all experiments, a result can occur by
chance due to the way the data has been split. To overcome this an n > 1 fold cross validation
process can be used, where the data is split into n groups {g1..gn}. For 10-fold cross validation,
ten experiments are carried out with each of the groups being used as the test set in one of the
ten runs; all other groups combined are thus used as the training set. Cross-validation is an
extension to the holdout validation technique and is commonly used in machine learning
studies. However cross-validation does not address the external validity of models and does not
demonstrate how well a model will perform outside its immediate environment. This must be
demonstrated by applying a model across systems, programs and with varying development
groups [13].

3: Methodology

We take a systematic approach to reviewing the literature on the prediction of faults in code.
Systematic literature reviews (SLR) are well established in medical research and increasingly in
software engineering. We follow the systematic literature review approach identified by
Kitchenham [12].

3.1 Research Questions

The overall aim of this systematic literature review (SLR) is to analyse the models used to
predict faults in source code. Our analysis allows studies to be understood and interpreted by
answering the research questions in Table 5.

Research Questions Motivation

RQ1 What is the context of the fault

prediction model?
This question allows us to understand the environment for which the
prediction model was developed. We examine context primarily in terms
of the origin of systems and the programming language that the model
has been developed and tested on. This contextual information allows
us to discuss the applicability and generalisability of models.

RQ2 What variables have been used in
fault prediction models?

This question identifies the independent and dependent variables of the
model. The answer shows the range of predictors of fault proneness
used in models as well as the form that these take. We can also report
on how thoroughly some variables are investigated compared to others.

RQ3 What modelling methods have been
used in the development of fault
prediction models?

This question identifies whether models are based on regression,
machine learning or other approaches. The answer to this question
allows us to discuss the popularity and effective use of particular
modelling methods.

RQ4 How do studies measure the
performance of their models?

Understanding how prediction studies measure and validate model
performance gives an indication of how confident we can be in these
results. We analyse several aspects of model performance (e.g.
significance levels, data balance, accuracy) to discuss how well models
are able to predict faults in code.

Table 5. The research questions addressed

It is important to note that a limitation of this study is that we do not report the performance of
particular models. As there are multiple performance measures reported by both statistical
models and machine learning models. Although we would like to be able to say that the best
result for technique x produces a performance y, unfortunately there are too many factors which
need to be taken into account when comparing studies even when they have reported the same
performance measure to make this feasible.

 7

3.2 Inclusion criteria

To be included in this review, a study must be reported in a complete paper published in
English as either a Journal paper or Conference proceedings. The criteria for papers to be
included in our SLR are based on the inclusion and exclusion criteria presented in Table 6.

Inclusion criteria Exclusion criteria

A paper must be… A paper must not be…

An empirical study
Focused on fault prediction, estimation or validation Highly specialised focused on, for example: testing,

fault injection, inspections, reliability modelling,
aspects, effort estimation, debugging, faults relating to
memory leakage etc., embedded software, nano-
computing, fault tolerance.

Use independent variables linked to outputs based on
code

About the detection or localisation of existing
individual known faults.

Faults in code is the main output (dependent variable) Focused on the datasets/metrics used in the model
rather than the prediction model

Table 6. Inclusion and exclusion criteria

Before accepting a paper into the review, we excluded repeated studies. If the same study
appeared in several publications we included only the most comprehensive or most recent.

3.3 Identification of papers

Our searches for papers were completed at the end of December 2009. Included papers were
published between January 2000 and December 2009. There were three elements to our
searches: an issue-by-issue manual reading of paper titles in relevant Journals and conferences;
key word searching using search engines; identification of papers using references from
included studies. The Journals and conferences shown in Appendix B were manually searched
issue-by-issue. These were chosen as highly relevant software engineering publications found
previously to be good sources of software engineering research [10].

Keyword searching was performed on the ACM Digital Library, IEEExplore and the ISI Web
of Science. These search engines cover the vast majority of software engineering publications
and the search string we used is given in Appendix A. We also included all papers within our
timeframe from the Catal and Diri [5] review. Our initial searches omitted 23 of Catal and
Diri’s papers as their search term included the term ‘quality’. We excluded this term from our
searches as it generates a very high false positive rate.

Table 7 shows that our initial searches elicited 1,616 papers. The title and abstract of each was
evaluated and 1,412 were rejected as not relevant to fault prediction. This process was validated
using a randomly selected 80 papers from the initial 1,616. Three researchers separately
interpreted and applied the inclusion and exclusion criteria to the 80 papers. Pairwise inter-rater
reliability was measured across the three sets of decisions to get a fair/good agreement on the
first iteration of this process. On the basis of the disagreements we clarified our inclusion and
exclusion criteria. A second iteration resulted in 100% agreement between the three
researchers. We looked at the remaining 202 papers in detail including checking for references
to other relevant papers (we found a further 80 papers in this way). Data was extracted from
each of these papers using the classification schemes discussed in the next section. During this
process we found some papers that did not contain the data needed to answer our specific

 8

research questions and these were also rejected. This process was validated by two researchers
classifying all accepted papers according to the type of fault being predicted and the types of
metrics used. A third researcher checked the classification of fault type. Finally the 23 extra
papers from Catal and Diri’s complementary review were also included. This process resulted
in the 148 papers included in this review.

Selection Process # of papers Validation

Papers extracted from databases, conferences and
journals

1,616 80 random papers independently classified
by 3 researchers

Sift based on title and abstract -1,414 rejected Fair/good inter-rater agreement on first sift
(k statistic test)

Full papers considered for review 202 primary
 80 secondary

Each paper undergoes further checks
when filling in data analysis forms, more
papers rejected on the basis that they do
not answer our research questions

Papers accepted for the review 148 papers 23 of these papers are sourced from Catal
and Diri’s review

 Table 7. Paper selection and validation process

3.4 Analysis of papers

3.4.1 Developing classification schemes

We use several data classification schemes to facilitate our analysis. These are largely based on
previous work on prediction modelling in software engineering and are discussed below.

Analysing the variables used in models. We use MacDonell and Shepperd’s [13] work to
motivate our analysis of the predictor/independent variable. Appendix D shows the more
detailed coding scheme we devised to classify the static code independent variables studies
used. We adapt Runeson et al’s [17] scheme of output metrics to identify the two ways in which
dependent variables (i.e. faults) may be classified, i.e., categorically or continuously.

Analysing the modelling methods used in models. We use two main categories of modeling
methods: statistics and machine learning (this categorisation is largely based on Fenton and
Neil [9]). Our finer grained analysis of statistical methods was developed by us to reflect the
statistical methods used in studies and is shown in Appendix E. We base our finer grained
analysis of the type of machine learning approaches used on Lessman et al’s [[51]]
classification of models (shown in Appendix F).

Analysing data balancing. We devised a classification scheme to understand how and if data
imbalance had been dealt with by studies reporting categorical outputs (continuous models do
not normally need to be as concerned about data balance). Our scheme was grounded in the
studies we reviewed and is derived as follows: One researcher read through all papers reporting
categorical models and extracted any approaches employed by the authors that might relate to
how the studies address the problem of data imbalance. This list of approaches was given to a
second researcher who used it to devise the categories shown in Appendix G.

Analysing the measurement of model performance. We analyse several aspects of model
performance to discuss how well models predict faults in software. Our schemes for analysing
the indicators used are grounded in the studies included in this review. We classify each study
included in this review in terms of the performance indicators reported to have been used in the

 9

papers. We analyse the performance of categorical studies (usually machine learning based
studies) based on the application of the confusion matrix as shown in Appendix H.
The performance of studies based on continuous data is usually based on statistics. We have
analysed the statistics used in continuous studies as shown in Appendix I.

3.4.2 Extracting the detailed contents of each individual paper

Three researchers were involved in the extraction of data from studies using our classification
schemes. Initially all three researchers extracted data from the same five studies. Their results
were compared and any disagreements discussed in detail. As a result of this, the classification
schemes were adjusted and the researchers’ expertise on applying them improved. Data from a
second set of five papers was then extracted by all three researchers using the classification
schemes. Again, any disagreements were thoroughly discussed and a final adjustment was
made to the classification schemes.

3.4.3 Presenting classification data

All papers included in this study are listed in a separate section of references and numbered 1-
148. This special section of references appears after the main reference list. Each included
paper reference has assigned to it a key showing the classifications extracted during the analysis
phase of this review. The key provides data for each paper relating to how it has been classified
for each of the data tables in this review (Tables 10-25). For example:

[[114]] Elish, K. O. and Elish, M. O. 2008. Predicting defect-prone software modules using support vector machines.

J. Syst. Softw. 81, 5 (May. 2008), 649-660.
(Paper=114; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=4; T19=NA; T20/21=1,7; T22=2; T23=2; T24=n; T25=y)

The key for this paper shows that for Table 10 (data used) this paper is coded ‘2’ (NASA data); for Table
11 (Language used) this paper is coded ‘1’ (C/C++) etc.

References to individual papers are not shown in the tables in the Results Section as such tables
would be unwieldy. This is similar to the approach taken by Jorgensen and Shepperd [10]. This
utility also enables groups of prediction studies included in this report to be selected based on
context, for example, all studies using C/C++ language and NASA data can be sourced from
the reference section by searching for T10=2 and T11=1.

3.5 Threats to validity

Search terms: We do not include the term ‘quality’ in our search terms as this would have
resulted in the examination of a far wider range of papers. This term also generates a high
number of false positive results. However, we might have missed some papers that use the term
‘quality’ as a synonym for ‘defect’ or ‘fault’, etc. We also omitted the term ‘failure’ from our
search string as this generated papers predominately reporting on studies of software reliability
in terms of the safety critical systems. Such studies of reliability predominately examine the
dynamic behaviour of the system, and seldom look at the prediction of static code faults which
is the focus of this review.

Search strategy: By applying our search terms to only the title of papers we may miss studies
of fault prediction that do not use these terms in the title. Dieste et al [8] report that the
effectiveness of searches can be improved if search terms are applied to both title and abstract
fields. However, since we extend our searches to include papers cited in the included papers,
we are confident that all key papers are included.

 10

Extracted data: It is likely that we have coded some papers incorrectly. Studies in the field of
fault prediction are complex and data from them is often hard to extract, comprehend and
classify. Even after considerable discussion amongst the three researchers extracting data from
the papers there was not always total agreement on how to code what was reported in a
particular paper. Fitting a unique study within a fixed classification scheme is therefore open to
some interpretation. Although we have spent many hours minimising misclassifications it is
likely that some inconsistencies remain in the data. Any misclassification should be reported to
the authors who will update the database that they maintain on this data. Furthermore, our
assessment of model performance can only be based on what is explicitly reported by authors of
studies. It could be that, for example, data has been balanced or particular performance tests
conducted, but not reported. In addition, studies occasionally use terms such as ‘accuracy’ and
‘precision’ in a general way, rather than to describe performance measures (see Table 3).

The data sets reported: It is not always clearly reported in papers whether the data analysed is
from new or evolving systems. The basis of data sets has important implications for the type of
metrics that should be used, as change data is highly relevant to evolving system though not
relevant to new systems. This lack of information reported in reviewed studies limits the
conclusions that we can draw from such studies. Also most studies assume the severity of faults
to be equal, yet clearly some faults will be more severe than others in terms of how they affect
the running of the system and how long they take to fix.

4. Results

This section presents the results obtained from our analysis in response to our research
questions. Before we specifically address each of our research questions, we provide some
publication information for the studies we have reviewed.

Date published
Approach used

(number of studies)

Machine
Learning

Stats Both Other Not clear Total

2000 1 7 3 2 0 13
2001 0 4 0 0 0 4
2002 4 8 2 2 0 16
2003 3 4 0 0 0 7
2004 4 4 5 1 0 14
2005 6 8 3 3 0 20
2006 6 4 8 1 0 19
2007 18 9 5 3 1 36
2008 6 2 3 0 0 11
2009 5 1 1 0 1 8

Total 53 51 30 12 2 148

Table 8. Publications by year

The increase in publications shown in Table 8 indicates a strong interest in studies of fault
prediction. This growth seems to have peaked in 2007 and started to tail off thereafter. Machine
learning (ML) studies account for much of this growth with the number of studies that use only
traditional statistical methods remaining fairly static over the years, but tailing off in the last
two years of the review.

 11

Table 9 shows that conference proceedings dominate publications in the area. This is perhaps to
be expected since there are many more articles published in conferences than in Journals5.
Appendix C gives full details of the conferences and Journals in which the papers are
published.

Publication Number Percentage

Journal 38 26
Conference or workshop 110 74

Total 148 100

Table 9: Publication sources

4.1 The context of fault prediction models (RQ1)

This question allows us to understand the environment for which the prediction model was
developed. We examine context primarily in terms of the origin of systems and the
programming language that the model has been developed and tested on. This contextual
information allows us to consider the applicability and generalisability of models.

Data used Number Percentage

1. OSS 32 22
2. NASA 38 26
3. Industrial 64 43
4. Combined 7 5
5. Academic 3 2
6. Not clear 4 3

Total 148 100

NB: Papers making up the data in each table are not shown. Instead each paper has a code assigned for every table in
the paper. All codes are in the SRL reference list attached to the individual paper’s reference

Table 10. Origin of data used in fault prediction studies

Table 10 indicates that 43% of the data used in this sample comes from closed source/industrial
systems with 22% using data from open source systems (OSS); a quarter of studies were based
on NASA’s industrially-based projects. This shows that a relatively high proportion of data
being used in fault prediction studies have industrial origins.

Language used Number Percentage

1. C/C++ 78 53
2. Java 29 20
3. Other* 14 9
4. Various 9 6
5. Not given 18 12

Total 148 100
*‘Other’ languages include Assembly, Fortran, Protel and Ada

Table 11. Languages used in fault prediction studies

5 Though this difference may even out in the next year or two given that research trends can lag behind in Journals
given the significantly longer publications lead times they have compared to conferences.

 12

Table 11 shows that the C/C++ language dominates in the studies. Over half of the models are
built by analysing C/C++ code and are specifically applicable to such code. Models based on
Java code account for 20% of models.
4.2 The variables used in fault prediction models (RQ2)

This question identifies the form that model inputs and outputs take and the range of indicators
of fault proneness used in models.

Unit used Number Percentage

1. Module** 64 43
2. Class 27 18
3. Component/unit 18 13
4. File 15 10
5. System 4 3
6. Project 3 2
7. Combination 6 4
8. Other* 9 5
9. Not clear 2 1

Total 148 100
*Includes field faults, programming constructs etc.

**Granularity is classified as ‘module’ if used by authors. We do not re-interpret how the term is applied.
Table 12. Granularity of dependent variables used

Table 12 shows the granularity at which studies report they have modelled fault prediction.
There is a range of granularity, with 43% of studies modelling faults in modules, 18% in
classes, and a further 10% in files. The module is typically defined in these studies as a function
or subroutine in a piece of code (though what the term ‘module’ actually defines is open to
debate). Overall, the range of granularity and the lack of standard terminology used across
studies make comparing across studies particularly difficult. Table 13 shows the independent
variables used across the studies.

Predictors/independent
variables used

Number
(n=148)

Percentage of
predictors

used

Percentage of
studies using

predictors
1. Previous fault data 35 16 24
2. Change data 38 18 26
3. Static code metrics 115 52 78
4. Dynamic code metrics 4 2 3
5. Miscellaneous* 27 13 18

Total 219 100

*Includes implementation of design patterns, testing and inspection metrics, qualitative data, and function points
NB. Many studies use more than one independent variable

Table 13. Independent variables used

Table 13 shows that static code metrics (SCM) are the most common basis for fault prediction;
78% of studies use these metrics (52% of all variables used are static code metrics). The use of
these metrics is most common where the NASA data has been used as this includes pre-
calculated static code data. Table 14 shows this category in more detail. Table 13 also shows
that module fault history data is used in 24% of studies (e.g. [[112]]). This indicates a belief that
a module previously found to be faulty may continue to be faulty in the future. Dynamic (i.e.
run-time) metrics are only used in 3% of studies in our sample (for example [[37]]). This is low
given that dynamically executed faults are of particular relevance to users and will directly

 13

impact the reliability and quality of a system. The limited use of dynamic metrics may be due to
the difficulty in collecting this type of data but is also likely to be related to the scope of our
search strategy6.

Static code metrics Number
(n=115)

Percentage of
SCMs used

1 Size 29 29
2 General 27 27
3 Structure 17 17
4 Complexity 23 23
5 Other 3 3

Total 99 99
NB: Some studies collect more than one type of SCM

Table 14. Static code metrics

Table 14 breaks down the static code metrics used by the 115 studies using them. Table 14
shows that a spread of measures are used, though further analysis also shows that code 1-4 is a
very common pattern of use (this mirrors the processed metrics data provided by NASA). Table
14 does show that the most commonly used metric is size (measured in terms of Lines of Code
(LOC)). Complexity and structure are also frequently used metrics. Studies in the ‘general’
category report using static code metrics, source code metrics or product measures without
being specific; this category also includes studies that list many metrics in the SCM class. The
use of large sets of metrics as independent variables has been made easier by the availability of
automated data extraction techniques such as CPP analyzer, PAMPA (e.g. [[7]]) and Code
Surfer7 tools (e.g. [[4]]).

Outputs used Number Percentage

1. Categorical 79 53
2. Continuous 40 27
3. Both 28 19
4. Unclear 1 1

Total 148 100

Table 15. Fault dependent variables used

Table 15 shows how faults are reported by our studies. Table 15 shows that there is a bias
towards models reporting on categorical faults (i.e. a module is either faulty or non-faulty).
However 19% of studies model both variables. As categorical and continuous data often uses
different performance measures, we divide the studies in this way when answering the research
question relating to model performance.

4.3 The modelling methods used in fault prediction models (RQ3)

This question identifies whether models are based on statistics, machine learning or other
approaches. The answer to this question allows us to discuss the popularity and use of particular
modelling approaches.

6 ‘Failure’ and related reliability-based terms were omitted from our search strategy as we chose to focus
on faults in static code.
7 http://www.grammatech.com/products/codesurfer/

 14

Modelling method used Number Percent

1. Machine learning 53 36
2. Statistics 51 35
3. Machine learning & statistics 30 20
5. Other* 12 8
6. Not clear 2 1

Total 148 100

*Includes change propagation; capture-recapture and ‘recency’ weighting.
Table 16. Modelling method used

 Dependent variable
 1. Cat

(n=79)
2. Cont
(n=40)

3. Both
(n=28)

4. Unclear
(n=1)

Total
(n=148)

 # % # % # % # % # %

M
od

el
lin

g
m

et
ho

d

1. Machine learning 43 83 3 6 7 13 0 0 53 100
2. Statistics 15 29 25 49 11 22 0 0 51 100
3. Machine learning & statistics 16 53 7 23 6 20 1 3 30 100
5. Other* 3 25 5 42 4 33 0 0 12 100
6. Not clear 2 100 0 0 0 0 0 0 2 100

*Includes change propagation; capture-recapture and ‘recency’ weighting.
Table 17. Dependent variable and modelling method used

Table 16 gives a high level view of the methods used to predict faults in the studies. Table 16
appears to show a fairly even balance between machine learning and statistically based studies.
However, no less than 30 studies (20%) use both machine learning and statistics. This
proportion of studies is slightly deceiving as most of these studies are machine learning studies
which also use statistics to differentiate between the performances of several machine learners.
This means that the number of machine learning studies could be interpreted as higher than the
stated 53 (35%).

Table 17 shows the relationship between the dependent variable and the method used. It shows
that 83% of machine learning studies report categorical data with 13% reporting both
categorical and continuous data. Studies based on statistical methods report 49% continuous
data with the remainder reporting either categorical or both types of data.

Approach used Number
(n=83 studies)

Percentage
of approaches

used
1. Statistical classifiers 36 24
2. Nearest neighbour methods 12 8
3. Neural networks 24 16
4. Support vector machine-based 8 5
5. Decision tree approaches 28 19
6. Ensemble methods 11 7
7. Misc 31 21

Total 150 100

Table 18. Classification of machine learning approaches

Table 18 shows the type of classification approaches that the 83 studies using machine learning
employ (these 83 studies are made up of the 53 that use only machine learning together with the
30 that use both machine learning and statistical methods). Table 18 shows that a spread of
classifiers is used. Statistical classifiers are most popular but decision tree approaches and

 15

neural networks are also fairly common. Table 18 also shows that 150 classifiers are used by 83
studies. This shows that many studies use more than one classifier and it is quite common for
studies to compare the performance of a variety of learners (e.g. [[4]]).

Statistics used Number
(n=81 studies)

Percentage

1. Regression 46 47
2. Compare means 7 7
3. Correlation 14 15
4. Feature selection 9 9
5. Descriptive stats 5 5
6. Other 16 16

Total 97 100

Table 19. Statistical methods used

Table 19 shows the statistical methods used by 81 studies (50 based only on statistical methods
and 31 based on using machine learning and statistical methods). Table 19 shows that by far the
most popular approach is regression, almost half of the studies are based on using some form of
regression. Table 19 also shows that fewer statistically based studies use multiple methods, with
97 methods being used by 81 studies.

4.4 Measuring the performance of fault prediction models (RQ4)

The studies use a variety of either statistically or machine learning based measures to test the
reliability of their results. To analyse these, we divide the studies into whether they report
categorical or continuous faults. This is a simplified division as only 25 (49%) statistical studies
(Table 17) report only continuous data. Many other studies use both statistical and machine
learning methods and report continuous and categorical data and the performance indicators
used by these studies is also shown.

Performance Indicator

Continuous studies
(n=40)

Studies using both
continuous and
categorical data

(n=28)
Number Percent Number Percent

4. Error rates (MRE,MAE etc) 13 33 7 32
5. Regression coefficient 12 30 6 27
6. Correlation test 8 20 5 23
7. Variance significance test 6 15 3 14
9. Other 1 3 1 5

Total (studies may use more than one or none) 40 100 22 100

Table 20. Performance measures used in studies using continuous data

Table 20 shows that a range of tests used to demonstrate the performance of models based on
continuous output data. This range corresponds with the range of methods used and the tests
necessary for those methods. Table 20 shows that the use of error rates are most popular
followed by regression coefficients. These results correspond to the use of regression by 47% of
statistical studies as shown in Table 19.

 16

Performance Indicator

Categorical studies

(n=79)
Studies using both

Categorical &
Continuous data

(n=28)
Number Percent Number Percent

1. Confusion Matrix related composite measures 53 59 16 76
2. Confusion Matrix constructs 32 41 5 24

Total (studies may use more than one or none) 85 100 21 100

Table 21. Performance measures used in categorical studies

Table 21 shows the performance measures used by categorical studies. It shows that many
confusion matrix composite measures and constructs are reported by papers. Almost all studies
reporting categorical data use at least one of these performance indicators. However, the range
of measures that can be used and the combinations selected by authors is large. This makes
comparing performance across categorical studies particularly difficult. This problem is
compounded with some studies reporting the performance of their model without explicitly
describing the performance indicators on which this performance is based (for example
[[115]]).

 Categorical studies
(n=79)

Is a confusion matrix provided? # %

1. Yes 11 14
2. No 68 86

Total 79 100

Table 22. Provision of a confusion matrix

Comparison of categorical model performance is more practical with the provision of a raw
confusion matrix. Table 22 shows that not many studies explicitly provide the raw confusion
matrix. Most categorical studies have probably produced a confusion matrix in order to
calculate indicators such as recall or balance, but authors have not reported this. However, with
multiple validation techniques being used this may not be possible (a single experiment with
stratified 10-fold cross validation repeated 1000 times on one dataset may yield typically
10,000 individual matrices). The provision of this raw data would be very useful for future
researchers and potential users of models as it significantly simplifies comparison across
studies. Pizzi et al [[133]] provide a very usable format for presenting a confusion matrix.

 Data used
 Categorical Both Total

Data balancing applied? # % # % # %

0. Data already balanced 2 3 0 0 2 2
1. Yes 9 11 3 11 12 11
2. No* 68 86 25 89 93 87

Total 79 100 28 100 107 100

* We also include studies where it is not clear that balancing has been done
Table 23. Data balancing used in categorical studies

Table 23 shows explicit data balancing has been applied by categorical studies and studies
using both categorical and continuous data. Table 23 shows that 12 of 107 of these studies are
based on balanced data sets. This suggests that the vast majority of studies either base their

 17

predictions on imbalanced data or else do not report the data balancing that they have applied.
Although data balancing is most important for studies reporting categorical data, some studies
reporting continuous data also report that they balanced the data (for example [[3]]).

 Accuracy or error
rate reported

Data balancing applied? # %

0. Data already balanced 1 3
1. Yes 8 22
2. No* 28 76

Total 37 100

* Included are studies where it is not clear that balancing has been done
Table 24. Use of the accuracy performance measure and data balancing

The importance of balanced data is related to the performance indictors used. Balanced data is
particularly important to the credibility of studies which report model performance in terms of
accuracy or error rate. Table 24 shows studies explicitly reporting model performance in terms
of accuracy and error rate in relation to data balancing. Table 24 shows that only 9 of the 37
studies (25%) reporting model performance in terms of accuracy are based on balanced data
sets.

 Cross-validation reported?
 Yes No Total

 # % # % # %

M
et

ho
ds

 1. Machine learning 26 47 27 53 53 100
2. Statistics 10 20 41 80 51 100
3. Machine learning & statistics 24 77 6 23 30 100

* Total is not 148 as studies using ‘other’ methods or where methods are not clearly stated are excluded
Table 25. Validation used in categorical studies

Table 25 shows how often cross-validation is explicitly reported in studies (for example the use
of 10-fold cross validation). Cross-validation is most relevant to improving the internal validity
of machine learning models, but also can be applied to improve the robustness of statistical
models. Table 25 shows that under half of machine learning studies report applying cross-
validation. It may be that studies perform cross-validation but do not explicitly report doing so.
Very few studies address the external validity of their model, an example that does is [[73]].

5. Discussion

In this section we comment on the implications of what we found in response to our research
questions. Overall, the results reported in the papers highlight the many different approaches
taken to tackle the problem of producing accurate, reliable and credible fault prediction models.
The amount of difference in approaches makes it difficult to compare across studies. This
problem is well documented with, for example Runeson et al (2006) noting that “comparing
studies is difficult” due to differences in fault types, the few faults found in many studies and
subjective classifications of faults.

5.1 Model context (RQ1)

Although the number of papers reporting fault prediction models seems to be decreasing, the
sophistication of papers has improved. For example, many more papers are now aware of the

 18

complexity of measuring the performance of models and are addressing model performance
more credibly (for example, Arisholm et al [2] is published just beyond our cut off date but is
an excellent example of a thoroughly mature approach).

NASA’s publicly available software metrics data have proved very popular in developing fault
prediction models. And has the advantage that researchers are able to replicate and compare
results using different approaches based on the same data set. However, although the repository
holds many metrics and is publicly available, it is not possible to explore the source code or
trace back how the metrics were extracted. It is also not always possible to identify if any
changes have been made to the extraction and computation mechanisms over time. A further
concern is that the data may suffer from ‘noise’ [[44]]. It is also questionable whether a model
that works well on the NASA data will work on a different type of system; as Menzies et al.
[[62]] point out, NASA works in a unique niche market developing software which is not
typical of the generality of software systems, though Turhan et al [[144]] have demonstrated
that models built on NASA data are useful for predicting faults in washing machines.

Although it is generally agreed that model performance varies across different software
engineering contexts (e.g. [[67]]), there are a few exceptions to this. For example, Bellini et al
[[7]] found a metric based on a count of different data structures that was not dependent on the
project. Zhou and Leung [[107]] examined relationships between OO design metrics and fault-
proneness of classes and agreed with other researchers that the Chidamber and Kemerer [7]
Metrics: Weighted Methods for Class (WMC), Response For a Class (RFC), Coupling between
Objects (CBO) were almost consistently found to be statistically significant to fault-proneness
of classes.

5.2 Model variables (RQ2)

Our results show that researchers are still struggling to find reliable and useful metrics as an
input to their fault prediction models. Researchers continue to search for predictor variables that
correlate to faults independent of project context. Others suspect that the relationship between
software metrics and faults is not strong enough for accurate predictions (e.g. [[48]]). Fenton
and Ohlsson [[24]] question the wide use of complexity metrics, and believe that ‘there is still
no conclusive evidence that such crude metrics are better predictors of fault-proneness than
something as simple as LOC.…”. Our results indicate that simple LOC are not always a
reliable predictor of fault-proneness, for example [[47]], especially when used as the only
predictor. Indeed, it is unlikely that any universal predictor for software faults that works for all
software projects exists. The metric that performs best will always depend on the context.
However we remain some distance from determining which model is most general, i.e., that
works in most situations.

Our results show a wide variation in code granularity on which models are based. This makes
comparing across studies complex and may make it difficult to repeat studies. Furthermore, a
definition of granularity is seldom given in papers. For example, many studies are based on
predicting faults in ‘modules’ though the definition of ‘module’ is not often given and when it
is, varies enormously.

5.3 Modelling approaches (RQ3)

In our sample we found that Machine Learning (ML) methods are increasing. It could be that
this increase is due to the methodological problems found in the more traditional statistical

 19

approaches [9], or the increasing availability of easy to use data mining tools such as Weka
(http://www.cs.waikato.ac.nz/ml/weka/) and LibSVM (http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/). However, despite the substantial level of research activity and the many different
models developed in the area of fault prediction, there is still no consensus in the research
community as to which approach is most applicable to specific environmental circumstances
([14] and [1]). Furthermore, the use of such approaches in this context is not yet mature. Many
studies focus on comparing the performance of a wide variety of machine learners. While many
researchers report in detail how predictive performance is influenced by the various calibrations
of machine learners. Menzies et al [[135]] have recently cast doubt on the value of continuing
to seek improved fault prediction performance via the increasing calibration of machine
learners. They report that a ceiling on the performance of machine learners in this domain has
now been reached.

5.4 Measuring model performance (RQ4)

Meta-analysing the performance of fault prediction models is very challenging. In this section
we discuss the many factors contributing to this problem (the terms used are described in Table
3 in the Background Section).

The use of multiple measures. Many studies report multiple performance measures produced
using multiple methods. This makes any meta-analysis of models a complex issue and
impractical across all fault prediction models. This presentation of multiple measures is
probably related to the use of tools like Weka which do this automatically. While this may add
internal validity to individual studies, it is unclear how to extend these results to improve
confidence in their external validity.

Lack of standardisation. The current lack of standardisation in reporting the performance of
fault prediction models means that it is often difficult to interpret which performance measures
have actually been used and to identify the contextual information. For example, it is not
always apparent whether the data has been balanced or whether it is necessary to do so; lacking
such information means we cannot be certain of the reliability of measures. In addition, basic
information about model performance is often not provided in studies. This makes it practically
impossible to compare model performances across studies. In particular the omission of raw
confusion matrices makes it problematic to compare the fundamental performances of models.
Although finding a way to present potentially multiple confusion matrices is a challenge for
researchers. Khoshgoftaar [[147]] has provided a suggested way of doing this.

The selection of performance measures. Selecting appropriate performance measures is
complicated and some measures may be better than others at reflecting how well a model
performs in a particular context. Indeed, the use of a particular performance measure can be
misleading and seemingly inflate or deflate a model’s performance. For example, 55% accuracy
on a balanced data set may imply a higher level of predictive performance than 99% accuracy
on an imbalanced data set, even though the latter sounds more impressive. A more extreme
example is a model that simply states that all units are non-faulty and can achieve 80%
accuracy for a system in which 20% of the units were actually faulty. In these situations even
though precision and recall decrease, accuracy might increase (or vice versa).

Categorical studies reporting accuracy or error rate/misclassification rate (=1-accuracy) figures
for imbalanced test sets do not tell the reader anything useful about the model’s performance.
Such papers should be treated with caution - when dealing with data that is imbalanced such
measures typically present no information about the ability of the model to detect faults.

 20

Even when the data is balanced and accuracy is reported, it still may not be the most
appropriate performance measure to report because these measures do not take into account the
cost of mis-classification. This cost can be a significant issue in safety critical software
engineering domains. Contextual factors must be considered when selecting appropriate
performance measures, for example the cost of a fault escaping discovery. For critical faults,
like security faults, the escape cost is high. In this context a manager might want to have high
recall but can live with lower precision. For arbitrary faults, a manager might want higher
precision. Ultimately cost should be considered in the performance measure. We found few
studies consider such issues, those that do include [[3]].

Our results suggest that it is only relatively recently that the complexity of these issues in the
selection of performance measures is being addressed with some notable papers showing
increasing maturity. Improved understanding of how performance measures behave is also
contributing to this growing maturity, for example Menzies et al [48] show that the values of
precision vary greatly when validating models across different data sets.

Data balancing.
Our findings show that not all papers mention class distributions and the problem of working
with ‘imbalanced’ datasets have yet to be resolved. The analysis of imbalanced data is
frequently performed in the machine learning community as well as the general software
engineering community with some datasets having as few as 0.4% defective modules (MDP
dataset PC2). However such data should be used with caution. As explained in [[147]], the
baseline for comparing performance could be ‘does the model do better than predicting the
majority class?’ This would be a way of determining if the model is telling us something new
and would discount the apparent ‘excellent’ and potentially spurious findings of some papers.
However [[139]] argues that it is the minority class (defective) which we are most interested in
and a ‘predict majority class’ model is not particularly useful.

In an ideal world, data mining models should be trained on data sets that have an equal number
of each output class (i.e. an equal number of defective and non-defective modules) since this is
commonly what the default algorithms expect. Some studies ([[82]], [[118]]) have taken steps
to achieve balanced data using techniques such as over-sampling or under-sampling.
Unfortunately, these techniques can add problems by reducing the number of tuples in the
training set (under-sampling) or create zero existent tuples or duplicate tuples (over-sampling).
When the data is balanced, the performance measure of accuracy can be applied with some
meaning, however accuracy should not be used in conjunction with imbalanced data as
demonstrated by [[147]].

Statistical significance. Not all of the studies include reports of statistical significance tests.
Our review supports the previous findings of Lessmann et al. [[51]] that “statistical hypothesis
testing has only been applied to a very limited extent in the software fault prediction literature.
…. it is standard practice to derive conclusions without checking significance”. It is not reliable
to draw conclusions merely on observed differences because the differences might have been
caused by chance alone [1]. This means that it is not possible to be sure of the significance of
the results obtained in over half the papers in this study. That said, there are some valuable
studies reporting insignificant statistical results (e.g. [[112]], [[24]]). These studies contribute
important information since while it is useful to learn about methods that are successful, it is
also essential to understand what does not work; this information will save time in future fault
prediction studies.

 21

Validation. The credibility of a model’s reported performance also depends on whether it has
been externally or internally validated. Very few studies apply their model in a variety of
settings, and those that do have variable results. Our knowledge of how well these models
perform outside their given domain is limited. Our findings support Challagulla et al. 's [[17]]
view that there remains a predominant focus on internal validity and a general failure to
demonstrate external validity.

6. Conclusions

This review shows that many fault prediction models have been published in the last ten years.
These models are heterogeneous and come in all shapes and sizes. A wide range of statistical
and machine learning approaches are used to build models. An encouragingly high proportion
of studies have been developed using industrial data, with OSS data also featuring strongly.
Many studies use the publicly available NASA data. A wide variety of independent variables
have been used in models, the most common of which fall into categories such as static code
metrics, change metrics and previous fault metrics. However, there is no clear ‘best’ indicator
of fault proneness emerging from studies, with indicators performing differently across
different studies. Independent variables such as lines of code, complexity metrics, process
metrics, module size, age of file were strongly correlated to faults in some studies but had no
correlation to faults in others. This suggests that there is no single ‘best’ approach to predicting
faults across all problem domains. The challenge remains to identify the context variables that
determine a model’s applicability.

The current state of the literature makes it complex and difficult to evaluate models. This is
likely to be a barrier to practitioners implementing these models and makes the meta-analysis of
model performance across the whole literature currently infeasible. A number of separate meta-
analyses of segments of the literature may be possible. However, even this is a challenge given
the wide range of performance indicators used by studies and the inter-dependence of these
with other factors in the model.

Currently there is no standardised way of presenting essential model building data. This makes
it more difficult to evaluate the performance of a model as essential raw data (for example
confusion matrix data) is often not reported. Other data is presented differently across studies
(for example accuracy) and some studies do not give the basis of the measures used to measure
performance. Although our review suggests that fault prediction modelling is maturing, there
remain many methodological anomalies and omissions in the majority of published studies.
This makes it difficult for researchers to accurately replicate previous studies or to transparently
build on previous studies. Maturity in the area seems to be slower than it could be as not all
studies build on the good practices of previous work.

To encourage the uptake of such good practices we are currently preparing comprehensive
guidelines for the design and presentation of fault prediction studies in software engineering.
These recommendations are based on the findings we report in this paper and should go some
way towards helping researchers to provide studies that can be more effectively built on in the
future.

Acknowledgements

We are grateful to the UK’s Engineering and Physical Science Research Council under grant
EPSRC EP/E063039/1 and to Science Foundation Ireland under grant 03/CE2/I303_1 who both
supported this research. We thank Professor Martin Shepperd who helped particularly in

 22

identifying the different types of faults these studies modelled. We also acknowledge Dr Paul
Wernick who provided input to the early stages of the work for this paper.

Main References

[1] Afzal, W. and R. Torkar (2008). Lessons Learned in Evaluating Software Engineering Prediction Systems.

Software Productivity Analysis and Cost Estimation, The 2nd International Workshop, SPACE 2008. 2
December, Beijing, China 35-43

[2] Arisholm E, Briand L, Johannessen E: A systematic and comprehensive investigation of methods to build and
evaluate fault prediction models. Journal of Systems and Software 83(1): 2-17 (2010)

[3] Batista, G. E., Prati, R. C., and Monard, M. C. 2004. A study of the behavior of several methods for balancing
machine learning training data. SIGKDD Explor. Newsl. 6, 1 (Jun. 2004), 20-29

[4] Beecham S, Hall T, Bowes D, Gray D, Counsell S, Wernick P, Black S, Leibchen G (2009) A short comparison
of two systematic literature reviews on fault prediction, University of Hertfordshire Tech Rep UH-CS-TR-492

[5] Catal, C. and B. Diri (2009). "A systematic review of software fault prediction studies." Expert Systems with
Applications 36(4): 7346-7354

[6] Chawla, N. V., K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer (2002). "SMOTE: Synthetic Minority Over-
sampling Technique." Journal of Artificial Intelligence Research 16: 321–357.

[7] Chidamber, S. R. and C. F. Kemerer (1994). "A metrics suite for object oriented design." IEEE Transaction on
Software Engineering 20: 476-493.

[8] Dieste O, Grimán A, Juristo N (2009) "Developing search strategies for detecting relevant experiments",
Empirical Software Engineering Journal, 14 (5), 513- 539

[9] Fenton, N. E. and M. Neil (1999). "A critique of software defect prediction models." Software Engineering,
IEEE Transactions on 25(5): 675-689..

[10] Jørgensen, M. and M. Shepperd (2007). "A Systematic Review of Software Development Cost Estimation
Studies." IEEE Transactions on Software Engineering 33(1): 33 - 53

[11] Kamei, Y.; Monden, A.; Matsumoto, S.; Kakimoto, T.; Matsumoto, K. (2007) The Effects of Over and
Under Sampling on Fault-prone Module Detection, Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on

[12] Kitchenham, B. (2004). Procedures for Performing Systematic Reviews, Keele University and National ICT
Australia Ltd.: 1 - 28.

[13] MacDonell, S. G. and M. J. Shepperd (2007). Comparing Local and Global Software Effort Estimation Models
-- Reflections on a Systematic Review. Empirical Software Engineering and Measurement, 2007. ESEM 2007.
First International Symposium on 401-409.

[14] Myrtveit, I., E. Stensrud and M. Shepperd (2005). "Reliability and validity in comparative studies of software
prediction models." IEEE Transactions on Software Engineering 31(5).

[15] Ostrand, T. J. and E. J. Weyuker (2007). How to measure success of fault prediction models. Fourth
international workshop on Software quality assurance: in conjunction with the 6th ESEC/FSE joint meeting,
Dubrovnik, CroatiaACM 25-30.

[16] Runeson, P., C. Andersson, T. Thelin, A. Andrews and T. Berling (2006). "What do we know about defect
detection methods? [software testing]." Software, IEEE 23(3): 82-90.

[17] Runeson, P., M. C. Ohlsson and C. Wohlin (2001). A Classification Scheme for Studies on Fault-Prone
Components. PROFES 2001 341-355.

[18] Sun, Y., M. Robinson, R. Adams, R. t. Boeckhorst, A. G. Rust and N. Davey (2006). Using sampling methods
to improve binding site predictions (Neural Networks and Machine Learning in Bioinformatics - Theory and
Applications). Artificial Neural Networks (ESANN2006), 14th Euro Symp on, Bruges, Belgium, April 26-28.

References for the 148 included SLR papers [[1148]]
(Note that references from this list are cited using the format [[ref#]])

Each reference is followed by the categorisations suggested by the authors of this paper. The
codes relate to the data presented in the data tables (Tables 10-25) within the paper. For
example: T10=1 means that for the purposes of Table 10 (Data used) a paper was coded ‘1’ (i.e.
using OSS data).

Please report possible misclassifications and missing papers to: tracy.hall@brunel.ac.uk

[[1]] Amasaki, S., Y. Takagi, O. Mizuno, and T.A.K.T. Kikuno (2003). A Bayesian belief network for assessing the

likelihood of fault content in Software Reliability Engineering, ISSRE, International Symposium. p. 215-226.

 23

 (Paper=1; T10=3; T11=5; T12=6: T13=1,3,5; T14=1; T15=1; T16=1; T18=1; T19=NA; T20/21=1,7,4; T22=2; T23=2; T24=y; T25=n)

[[2]] Andersson, C. and P. Runeson (2007). A Replicated Quantitative Analysis of Fault Distributions in Complex
Software Systems. Software Engineering, IEEE Transactions on. 33(5): p. 273-286.
 (Paper=2; T10=3; T11=1; T12=1: T13=2,3; T14=2; T15=2; T16=2; T18=NA; T19=3, 6; T20/21=6; T22=2; T23=2; T24=n; T25=n)

[[3]] Arisholm, E. and L.C. Briand (2006). Predicting fault-prone components in a java legacy system in Empirical

Software Engineering, Procs of the 2006 ACM/IEEE International Symposium on. Rio de Janeiro. p8-17.
 (Paper=3; T10=3; T11=2; T12=2: T13=2,3; T14=2; T15=3; T16=2; T18=NA; T19=1, 4, 6; T20/21=2; T22=2; T23=1; T24=n; T25=y)

[[4]] Arisholm, E., L.C. Briand, and M. Fuglerud (2007). Data Mining Techniques for Building Fault-proneness

Models in Telecom Java Software in Software Reliability, 2007. ISSRE '07. The 18th IEEE International
Symposium on. p. 215-224.
(Paper=4; T10=3; T11=2; T12=2: T13=1,2,3,5; T14=5; T15=1; T16=1; T18=3 4 5 7; T19=NA; T20/21=1,2; T22=2; T23=1; T24=n; T25=n)

[[5]] Ayewah, N., W. Pugh, J.D. Morgenthaler, J. Penix, and Y. Zhou (2007). Evaluating static analysis defect

warnings on production software in Workshop on Program analysis for software tools and engineering,
Proceedings of the 7th ACM SIGPLAN-SIGSOFT San Diego, California, USA. p. 1-8: ACM.

 (Paper=5; T10=4; T11=2; T12=3: T13=1,5; T14=NA; T15=3; T16=5; T18=NA; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[6]] Bell, R.M., T. Ostrand, J. , and E.J. Weyuker (2006). Looking for bugs in all the right places in Software

testing and analysis, Proceedings of the 2006 International symposium on Portland, USA. p1-72: ACM.
(Paper=6; T10=3; T11=2; T12=4: T13=1,2,3; T14=1; T15=2; T16=2; T18=NA; T19=1.1; T20/21=5; T22=2; T23=2; T24=; T25=n)

[[7]] Bellini, P., I. Bruno, P. Nesi, and D. Rogai (2005). Comparing fault-proneness estimation models in

Engineering of Complex Computer Systems (ICECCS’05), Proc. of 10th IEEE International Conference on
p. 205–214.

 (Paper=7; T10=3; T11=1; T12=3: T13=3; T14=2; T15=1; T16=2; T18=NA; T19=1, 2, 3; T20/21=1,2; T22=2; T23=2; T24=n; T25=y)

[[8]] Bernstein, A., J. Ekanayake, and M. Pinzger (2007). Improving defect prediction using temporal features and

non linear models in Ninth international workshop on Principles of software evolution: in conjunction with
the 6th ESEC/FSE joint meeting. Dubrovnik, Croatia. p. 11-18: ACM.

 (Paper=8; T10=1; T11=2; T12=7: T13=2; T14=NA; T15=3; T16=1; T18=1 5 7; T19=NA; T20/21=1,6,7; T22=1; T23=2; T24=y; T25=n)

[[9]] Bezerra, M.E.R., A.L.I. Oliveira, and S.R.L. Meira (2007). A Constructive RBF Neural Network for

Estimating the Probability of Defects in Software Modules in Neural Networks, 2007. IJCNN 2007.
International Joint Conference on. p. 2869-2874.
(Paper=9; T10=2; T11=1; T12=1: T13=1,3; T14=1; T15=1; T16=1; T18=1 3; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=y)

[[10]] Bibi, S., G. Tsoumakas, I. Stamelos, and I. Vlahvas (2006). Software Defect Prediction Using Regression via

Classification in Computer Systems and Applications, 2006. IEEE International Conference on. p. 330-336.
 (Paper=10; T10=3; T11=3; T12=2: T13=5; T14=NA; T15=2; T16=3; T18=6; T19=Not clear; T20/21=4; T22=2; T23=2; T24=y; T25=y)

[[11]] Binkley, D., H. Feild, D. Lawrie, and M. Pighin (2007). Software Fault Prediction using Language

Processing in Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION, 2007. TAICPART-MUTATION 2007. p. 99-110.
(Paper=11; T10=1; T11=1; T12=1: T13=2,3; T14=1; T15=2; T16=2; T18=NA; T19=1; T20/21=5; T22=2; T23=2; T24=n; T25=n)

[[12]] Briand, L.C., K. El Emam, B.G. Freimut, and O. Laitenberger (2000). A comprehensive evaluation of

capture-recapture models for estimating software defect content. Software Engineering, IEEE Transactions
on. 26(6): p. 518-540.

 (Paper=12; T10=4; T11=1; T12=8: T13=5; T14=NA; T15=2; T16=5; T18=NA; T19=NA; T20/21=4; T22=2; T23=2; T24=n; T25=y)

[[13]] Briand, L.C., W.L. Melo, and J. Wu (2002). Assessing the Applicability of Fault-Proneness Models Across

Object-Oriented Software Projects. Software Engineering, IEEE Transactions on. 28(7): p. 706-720.
 (Paper=13; T10=3; T11=2; T12=2: T13=3; T14=1,4,5; T15=3; T16=2; T18=NA; T19=1.2, 1.3 4, 6; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[14]] Catal, C., B. Diri, and B. Ozumut (2007). An Artificial Immune System Approach for Fault Prediction in

Object-Oriented Software in Dependability of Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd
International Conference on. p. 238-245.
(Paper=14; T10=2; T11=1; T12=2: T13=3; T14=1,5; T15=1; T16=1; T18=7; T19=NA; T20/21=1; T22=1; T23=2; T24=n; T25=y)

[[15]] Ceylan, E., F.O. Kutlubay, and A.B. Bener (2006). Software Defect Identification Using Machine Learning

Techniques in Software Engineering and Advanced Applications, 2006. SEAA '06. 32nd EUROMICRO
Conference on. p. 240-247.

 (Paper=15; T10=3; T11=5; T12=1: T13=1,3; T14=2; T15=2; T16=3; T18=3 5 7; T19=Not clear; T20/21=3,4; T22=2; T23=2; T24=n; T25=n)

 24

[[16]] Challagulla, V.U.B., F.B. Bastani, and I.L. Yen (2006). A Unified Framework for Defect Data Analysis

Using the MBR Technique in International Conference on Tools with Artificial Intelligence, 2006. ICTAI
'06. 18th IEEE p. 39-46.

 (Paper=16; T10=2; T11=1; T12=1: T13=3; T14=1,4; T15=1; T16=1; T18=2 5 6 7; T19=NA; T20/21=1,2; T22=2; T23=2; T24=y; T25=n)

[[17]] Challagulla, V.U.B., F.B. Bastani, I.L. Yen, and R.A. Paul (2005). Empirical assessment of machine learning

based software defect prediction techniques in Object-Oriented Real-Time Dependable Systems, 2005.
WORDS 2005. 10th IEEE International Workshop on. p. 263-270.

 (Paper=17; T10=2; T11=1; T12=1: T13=3; T14=1,5; T15=2; T16=3; T18=1 2 3 5 6 7; T19=Not clear; T20/21=4; T22=2; T23=2; T24=n; T25=n)

[[18]] Dallmeier, V. and T. Zimmermann (2007). Extraction of bug localization benchmarks from history in

Automated Software Engineering, Proceedings of the twenty-second IEEE/ACM International conference on
Atlanta, Georgia, USA. p. 433-436: ACM.

 (Paper=18; T10=1; T11=2; T12=3: T13=3 1; T14=2; T15=3; T16=5; T18=NA; T19=NA; T20/21=6,1; T22=2; T23=2; T24=n; T25=n)

[[19]] Denaro, G. (2000). Estimating software fault-proneness for tuning testing activities in Software Engineering,

Proceedings of the 22nd International Conference on Limerick, Ireland. p. 704-706: ACM.
 (Paper=19; T10=3; T11=1; T12=1: T13=3; T14=1,2,4; T15=1; T16=2; T18=NA; T19=1.2; T20/21=5,7; T22=2; T23=2; T24=n; T25=n)

[[20]] Denaro, G., S. Morasca, and M. Pezz (2002). Deriving models of software fault-proneness in Software

engineering and knowledge engineering, Proceedings of the 14th International conference on Ischia, Italy. p.
361-368: ACM.
(Paper=20; T10=3; T11=1; T12=1: T13=3,4; T14=2; T15=1; T16=2; T18=NA; T19=1.2; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[21]] Denaro, G. and M. Pezz (2002). An empirical evaluation of fault-proneness models in Software Engineering,

Proceedings of the 24th International Conference on Orlando, Florida. p. 241-251: ACM.
 (Paper=21; T10=1; T11=1; T12=1: T13=3; T14=1,2,4,7; T15=1; T16=2; T18=NA; T19=1, 4; T20/21=1,5; T22=2; T23=2; T24=n; T25=y)

[[22]] El Emam, K., W.L. Melo, and J.C. Machado (2001). The prediction of faulty classes using object-oriented

design metrics. Journal of Systems and Software. 56(1): p. 63-75.
 (Paper=22; T10=3; T11=2; T12=2: T13=3; T14=2; T15=1; T16=2; T18=NA; T19=1, 3, 5; T20/21=5,2,1,7,4; T22=1; T23=2; T24=n; T25=n)

[[23]] Fenton, N., M. Neil, W. Marsh, P. Hearty, L. Radlinski, and K. Paul (2007). Project Data Incorporating

Qualitative Facts for Improved Software Defect Prediction in Predictor Models in Software Engineering,
Proceedings of the Third International Workshop on IEEE Computer Society.
(Paper=23; T10=3; T11=5; T12=6: T13=1,3,5; T14=1; T15=2; T16=1; T18=1; T19=NA; T20/21=5; T22=2; T23=2; T24=n; T25=n)

[[24]] Fenton, N.E. and N. Ohlsson (2000). Quantitative analysis of faults and failures in a complex software

system. Software Engineering, IEEE Transactions on. 26(8): p. 797-814.
(Paper=24; T10=3; T11=1; T12=1: T13=1,2,3; T14=2; T15=2; T16=2; T18=NA; T19=3, 6; T20/21=6,2; T22=2; T23=2; T24=n; T25=n)

[[25]] Fioravanti, F. and P. Nesi (2001). A Study on Fault-Proneness Detection of Object-Oriented Systems in

European Conference Software Maintenance and Reeng. (CSMR 2001), Proc. Fifth p. 121-130.
(Paper=25; T10=6; T11=1; T12=5: T13=3; T14=5; T15=1; T16=2; T18=NA; T19=1.2, 4; T20/21=1; T22=2; T23=1; T24=y; T25=n)

[[26]] Gao, K. and T.M. Khoshgoftaar (2007). A Comprehensive Empirical Study of Count Models for Software

Fault Prediction. Reliability, IEEE Transactions on. 56(2): p. 223-236.
 (Paper=26; T10=3; T11=1; T12=1: T13=2,3,5; T14=1; T15=2; T16=2; T18=NA; T19=1.2; T20/21=4; T22=2; T23=2; T24=n; T25=y)

[[27]] Graves, T.L., A.F. Karr, J.S. Marron, and H.A.S.H. Siy (2000). Predicting fault incidence using software

change history. Software Engineering, IEEE Transactions on. 26(7): p. 653-661.
 (Paper=27; T10=3; T11=1; T12=3: T13=2,3; T14=1,4; T15=2; T16=2; T18=NA; T19=1.3; T20/21=5,4; T22=2; T23=2; T24=n; T25=n)

[[28]] Guo, L., B. Cukic, and H. Singh (2003). Predicting fault prone modules by the Dempster-Shafer belief

networks in Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference on p.
249-252.

(Paper=28; T10=2; T11=1; T12=1: T13=1,3; T14=1,4; T15=1; T16=1; T18=1 7; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=y)

[[29]] Guo, L., Y. Ma, B. Cukic, and S. Harshinder (2004). Robust prediction of fault-proneness by random forests

in Software Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on. p. 417-428.
(Paper=29; T10=2; T11=1; T12=1: T13=3; T14=1,4; T15=1; T16=1; T18=5 7; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=y)

[[30]] Gyimothy, T., R. Ferenc, and I. Siket (2005). Empirical validation of object-oriented metrics on open source

software for fault prediction. Software Engineering, IEEE Transactions on. 31(10): p. 897-910.

 25

 (Paper=30; T10=1; T11=1; T12=2: T13=3; T14=1,5; T15=3; T16=3; T18=1 3 5; T19=Not clear; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[31]] Harel, A. and K. Kantorowitz (2005). Estimating the number of faults remaining in software code documents

inspected with iterative code reviews in Software - Science, Technology and Engineering, 2005. Proceedings.
IEEE International Conference on. p. 151-160.

(Paper=31; T10=3; T11=1; T12=1: T13=3,5; T14=1; T15=2; T16=5; T18=NA; T19=NA; T20/21=7; T22=2; T23=2; T24=n; T25=n)

[[32]] Hassan, A.E. and R.C. Holt (2004). Predicting change propagation in software systems in Software

Maintenance, 2004. Proceedings. 20th IEEE International Conference on. p. 284-293.
(Paper=32; T10=1; T11=1; T12=4: T13=2; T14=NA; T15=1; T16=1; T18=8; T19=NA; T20/21=1; T22=2; T23=2; T24=n; T25=n)

[[33]] Hassan, A.E. and R.C. Holt (2005). The top ten list: dynamic fault prediction in Software Maintenance, 2005.

ICSM'05. Proceedings of the 21st IEEE International Conference on. p. 263-272.
(Paper=33; T10=1; T11=1; T12=3: T13=1,2; T14=NA; T15=2; T16=1; T18=7; T19=NA; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[34]] Hovemeyer, D. and W. Pugh (2004). Finding bugs is easy in Object-oriented programming systems,

languages and applications, Companion to the 19th annual ACM SIGPLAN conference on Vancouver, BC,
CANADA. p. 132-136: ACM.

(Paper=34; T10=1; T11=2; T12=3: T13=1; T14=NA; T15=1; T16=5; T18=NA; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[35]] Jiang, L., Z. Su, and E. Chiu (2007). Context-based detection of clone-related bugs in Foundations of

Software Engineering, Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT International Symposium on Dubrovnik, Croatia. p. 55-64: ACM.

(Paper=35; T10=1; T11=4; T12=3: T13=3; T14=5; T15=3; T16=1; T18=7; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[36]] Jiang, Y., B. Cukic, and T. Menzies (2007). Fault Prediction using Early Lifecycle Data in Software

Reliability, 2007. ISSRE '07. The 18th IEEE International Symposium on. p. 237-246.
 (Paper=36; T10=2; T11=1; T12=1: T13=1,5; T14=2; T15=1; T16=3; T18=1 2 3 5 7; T19=Not clear; T20/21=1,2; T22=2; T23=2; T24=n; T25=y)

[[37]] Jones, J.A. and M.J. Harrold (2005). Empirical evaluation of the tarantula automatic fault-localization

technique in Automated Software Engineering, Proceedings of the 20th IEEE/ACM International Conference
on Long Beach, CA, USA. p. 273-282: ACM.

(Paper=37; T10=3; T11=1; T12=3: T13=4; T14=NA; T15=3; T16=5; T18=NA; T19=NA; T20/21=1,9; T22=2; T23=2; T24=n; T25=n)

[[38]] Jones, J.A., M.J. Harrold, and J. Stasko (2002). Visualization of test information to assist fault localization in

Software Engineering, Proceedings of the 24th International Conference on Orlando, Florida. p. 467-477:
ACM.

(Paper=38; T10=3; T11=1; T12=3: T13=5; T14=NA; T15=1; T16=5; T18=NA; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[39]] Joshi, H., C. Zhang, S. Ramaswamy, and C. Bayrak (2007). Local and Global Recency Weighting Approach

to Bug Prediction in Mining Software Repositories, 2007. ICSE Workshops MSR '07. Fourth International
Workshop on p. 33-33.

(Paper=39; T10=1; T11=2; T12=3: T13=1; T14=NA; T15=2; T16=5; T18=NA; T19=NA; T20/21=8; T22=2; T23=2; T24=n; T25=n)

[[40]] Kaminsky, K. and G. Boetticher (2004). Building a genetically engineerable evolvable program (GEEP)

using breadth-based explicit knowledge for predicting software defects in Fuzzy Information, 2004.
Processing NAFIPS '04. IEEE Annual Meeting of the. p. 10-15 Vol.1.

(Paper=40; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=7; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[41]] Kanmani, S., V.R. Uthariaraj, V. Sankaranaryanan, and P. Thambidurai (2004). Object oriented software

quality prediction using general regression neural networks. ACM Sigsoft Software Eng. Notes. 29 (5): p.1-6.
 (Paper=41; T10=5; T11=1; T12=2: T13=3; T14=5; T15=2; T16=3; T18=1 3; T19=Not clear; T20/21=5,6,3; T22=2; T23=2; T24=n; T25=n)

[[42]] Khoshgoftaar, T.M., K. Gao, and R.M. Szabo (2001). An application of zero-inflated Poisson regression for

software fault prediction in Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on. p. 66-73.
(Paper=42; T10=3; T11=1; T12=4: T13=3,5; T14=1; T15=2; T16=2; T18=NA; T19=1.2; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[43]] Khoshgoftaar, T.M. and N. Seliya (2002). Tree-based software quality estimation models for fault prediction

in Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on. p. 203-214.
 (Paper=43; T10=3; T11=1; T12=1: T13=3; T14=4,5; T15=3; T16=3; T18=5 6 7; T19=Not clear; T20/21=7,4; T22=2; T23=2; T24=n; T25=y)

[[44]] Khoshgoftaar, T.M. and N. Seliya (2004). Comparative assessment of software quality classification

techniques: An empirical study. Empirical Software Engineering. 9(3): p. 229–257.
(Paper=44; T10=3; T11=3; T12=2: T13=3; T14=2; T15=1; T16=3; T18=5 6; T19=Not clear; T20/21=2; T22=2; T23=2; T24=n; T25=y)

 26

[[45]] Khoshgoftaar, T.M., V. Thaker, and E.B. Allen (2000). Modeling fault-prone modules of subsystems in

Software Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium. p259-267.
 (Paper=45; T10=3; T11=5; T12=1: T13=2,3,5; T14=2; T15=1; T16=3; T18=5 6; T19=Not clear; T20/21=2; T22=2; T23=2; T24=n; T25=y)

[[46]] Sunghun, K., T. Zimmermann, K. Pan, and E.J.J. Whitehead (2006). Automatic Identification of Bug-

Introducing Changes in Automated Software Engineering, 2006. ASE '06. 21st IEEE/ACM International
Conference on p. 81-90.
(Paper=46; T10=1; T11=2; T12=6: T13=2; T14=NA; T15=1; T16=1; T18=7; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[47]] Knab, P., M. Pinzger, and A. Bernstein (2006). Predicting defect densities in source code files with decision

tree learners in Mining software repositories, Proceedings of the 2006 International workshop on Shanghai,
China. p. 119-125: ACM.

 (Paper=47; T10=1; T11=1; T12=4: T13=1,2,3; T14=1,2; T15=3; T16=3; T18=1 5 7; T19=Not clear; T20/21=1; T22=1; T23=2; T24=n; T25=y)

[[48]] Koru, A.G. and H. Liu (2005). Building Defect Prediction Models in Practice. IEEE Software. 22(6): p23-29.

 (Paper=48; T10=2; T11=1; T12=1: T13=1,3; T14=1,4,5; T15=3; T16=1; T18=2 7; T19=NA; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[49]] Koru, A.G., D. Zhang, and H. Liu (2007). Modeling the Effect of Size on Defect Proneness for Open-Source

Software in Software Engineering, Companion to the proceedings of the 29th International Conference on p.
115-124: IEEE Computer Society.

 (Paper=49; T10=1; T11=1; T12=2: T13=2; T14=NA; T15=3; T16=2; T18=NA; T19=1, 6; T20/21=5,4; T22=2; T23=2; T24=n; T25=n)

[[50]] Kutlubay, O., B. Turhan, and A.B. Bener (2007). A Two-Step Model for Defect Density Estimation in

Software Engineering and Advanced Applications, 2007. 33rd EUROMICRO Conference on. p. 322-332.
 (Paper=50; T10=2; T11=1; T12=1: T13=3; T14=2; T15=3; T16=3; T18=1 5; T19=Not clear; T20/21=1,4; T22=1; T23=2; T24=y; T25=y)

[[51]] Lessmann, S., B. Baesens, C. Mues, and S. Pietsch (2008). Benchmarking classification models for software

defect prediction: A proposed framework and novel findings. Software Engineering, IEEE Transactions on.
34(4): p. 485-496.

 (Paper=51; T10=2; T11=1; T12=1: T13=1,3; T14=1,4,5; T15=1; T16=3; T18=1 6; T19=Not clear; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[52]] Li, P.L., J. Herbsleb, and M. Shaw (2005). Finding predictors of field defects for open source software

systems in commonly available data sources: a case study of OpenBSD in Software Metrics, 2005. 11th IEEE
International Symposium. p. 10 pp.

 (Paper=52; T10=1; T11=1; T12=8: T13=2,3,5; T14=2; T15=2; T16=2; T18=NA; T19=1, 3; T20/21=6,3; T22=2; T23=2; T24=n; T25=n)

[[53]] Li, P.L., J. Herbsleb, and M. Shaw (2005). Forecasting field defect rates using a combined time-based and

metrics-based approach: a case study of OpenBSD in Software Reliability Engineering, 2005. ISSRE 2005.
16th IEEE International Symposium on. p. 10 pp.

 (Paper=53; T10=1; T11=1; T12=8: T13=1,2,3,5; T14=1; T15=2; T16=2; T18=NA; T19=1,6; T20/21=9; T22=2; T23=2; T24=n; T25=n)

[[54]] Li, P.L., J. Herbsleb, M. Shaw, and B. Robinson (2006). Experiences and results from initiating field defect

prediction and product test prioritization efforts at ABB Inc in Software engineering, Proceedings of the 28th
International conference on Shanghai, China. p. 413-422: ACM.

 (Paper=54; T10=3; T11=1; T12=3: T13=1,2,3,5; T14=2; T15=2; T16=3; T18=1 3 5; T19=Not clear; T20/21=4; T22=2; T23=2; T24=n; T25=y)

[[55]] Li, P.L., M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam (2004). Empirical evaluation of defect projection

models for widely-deployed production software systems in Foundations of Software Engineering,
Proceedings of the 12th ACM SIGSOFT twelfth International Symposium on Newport Beach, CA, USA. p.
263-272: ACM.

(Paper=55; T10=4; T11=5; T12=5: T13=5; T14=NA; T15=2; T16=2; T18=NA; T19=1, 4; T20/21=5; T22=2; T23=2; T24=n; T25=n)

[[56]] Li, Z. and M. Reformat (2007). A practical method for the software fault-prediction in Information reuse and

integration, IEEE international conference on Las Vegas, Nevada, USA. p. 659–666.
 (Paper=56; T10=2; T11=1; T12=8: T13=1,2,3; T14=2; T15=3; T16=1; T18=1 4 7; T19=NA; T20/21=1; T22=2; T23=1; T24=y; T25=y)

[[57]] Liblit, B., A. Aiken, A.X. Zheng, and M.I. Jordan (2003). Bug isolation via remote program sampling in

Programming language design and implementation, Proceedings of the ACM SIGPLAN 2003 Conference on
San Diego, California, USA. p. 141-154: ACM.

(Paper=57; T10=1; T11=1; T12=3: T13=4; T14=NA; T15=1; T16=2; T18=NA; T19=1.2; T20/21=9; T22=2; T23=2; T24=n; T25=y)

[[58]] Ma, Y., L. Guo, and B. Cukic (2006). A Statistical Framework for the Prediction of Fault-Proneness.

Advances in Machine Learning Application in Software Engineering, Idea Group Inc: p. 1-26.
 (Paper=58; T10=2; T11=1; T12=1: T13=3; T14=1,4; T15=1; T16=1; T18=5 6 7; T19=NA; T20/21=1,2; T22=2; T23=1; T24=y; T25=y)

 27

[[59]] Madhavan, J.T. and E.J. Whitehead Jr (2007). Predicting buggy changes inside an integrated development

environment in OOPSLA workshop on eclipse technology eXchange, Proceedings of the 2007. Montreal,
Quebec, Canada. p. 36-40: ACM.
(Paper=59; T10=1; T11=2; T12=4: T13=2,3; T14=4; T15=1; T16=1; T18=4; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=y)

[[60]] Malaiya, Y.K. and J. Denton (2000). Module size distribution and defect density in Software Reliability

Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium on. p. 62-71.
(Paper=60; T10=4; T11=3; T12=1: T13=1,3; T14=1,4; T15=3; T16=2; T18=NA; T19=3; T20/21=1; T22=2; T23=2; T24=n; T25=n)

[[61]] Marcus, A., D. Poshyvanyk, and R. Ferenc (2008). Using the Conceptual Cohesion of Classes for Fault

Prediction in Object-Oriented Systems. Software Engineering, IEEE Transactions on. 34(2): p. 287-300.
 (Paper=61; T10=1; T11=1; T12=2: T13=2,3; T14=5; T15=1; T16=2; T18=NA; T19=1, 6, 5; T20/21=1,5; T22=2; T23=2; T24=n; T25=n)

[[62]] Menzies, T., J. Greenwald, and A. Frank (2007). Data Mining Static Code Attributes to Learn Defect

Predictors. Software Engineering, IEEE Transactions on. 33(1): p. 2-13.
(Paper=62; T10=2; T11=4; T12=2: T13=3; T14=2; T15=1; T16=1; T18=1; T19=NA; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[63]] Mizuno, O., S. Ikami, S. Nakaichi, and T. Kikuno (2007). Spam Filter Based Approach for Finding Fault-

Prone Software Modules in Mining Software Repositories, Proceedings of the Fourth International Workshop
on IEEE Computer Society.

 (Paper=63; T10=1; T11=2; T12=1: T13=5; T14=NA; T15=1; T16=1; T18=1 7; T19=NA; T20/21=1; T22=2; T23=1; T24=y; T25=y)

[[64]] Mizuno, O. and T. Kikuno (2007). Training on errors experiment to detect fault-prone software modules by

spam filter in Foundations of Software Engineering, Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT International Symposium on. Dubrovnik, Croatia.
p. 405-414: ACM.

 (Paper=64; T10=1; T11=2; T12=1: T13=5; T14=NA; T15=1; T16=1; T18=1 7; T19=NA; T20/21=1; T22=1; T23=2; T24=y; T25=y)

[[65]] Nagappan, N. and T. Ball (2005). Use of relative code churn measures to predict system defect density in

Software engineering, Proceedings of the 27th International conference on. St. Louis, USA. p284-292: ACM.
 (Paper=65; T10=3; T11=1; T12=4: T13=2; T14=NA; T15=3; T16=2; T18=NA; T19=1, 2, 3, 4, 6; T20/21=5,4; T22=2; T23=2; T24=n; T25=n)

[[66]] Nagappan, N. and T. Ball (2005). Static analysis tools as early indicators of pre-release defect density in

Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on p. 580-586.
 (Paper=66; T10=3; T11=1; T12=3: T13=1; T14=NA; T15=2; T16=2; T18=NA; T19=1, 2, 3, 6; T20/21=5,6,2; T22=2; T23=2; T24=n; T25=n)

[[67]] Nagappan, N., T. Ball, and A. Zeller (2006). Mining metrics to predict component failures in Software

engineering, Proceedings of the 28th International Conference on Shanghai, China. p. 452-461: ACM.
 (Paper=67; T10=3; T11=1; T12=1: T13=1,3; T14=2,5; T15=1; T16=3; T18=1; T19=Not clear; T20/21=5; T22=2; T23=2; T24=n; T25=n)

[[68]] Neufelder, A.M. (2000). How to measure the impact of specific development practices on fielded defect

density in Software Reliability Engineering. ISSRE 2000. Procs. 11th International Symposium p148-160.
 (Paper=68; T10=3; T11=1; T12=3: T13=5; T14=NA; T15=2; T16=5; T18=NA; T19=NA; T20/21=5,6; T22=2; T23=2; T24=n; T25=n)

[[69]] Nikora, A.P. and J.C. Munson (2003). Developing fault predictors for evolving software systems in Software

Metrics Symposium, 2003. Proceedings. Ninth International. p. 338-350.
 (Paper=69; T10=2; T11=1; T12=1: T13=2,3; T14=1,5; T15=2; T16=2; T18=NA; T19=1.3; T20/21=5,4; T22=2; T23=2; T24=n; T25=n)

[[70]] Nikora, A.P. and J.C. Munson (2004). The effects of fault counting methods on fault model quality in

Computer Software and Applications Conference,. COMPSAC 2004. Proceedings. p. 192-201.
 (Paper=70; T10=2; T11=1; T12=1: T13=2,3; T14=2,5; T15=2; T16=2; T18=NA; T19=1, 4; T20/21=5; T22=2; T23=2; T24=n; T25=n)

[[71]] Olague, H.M., S. Gholston, and S. Quattlebaum (2007). Empirical validation of three software metrics suites

to predict fault-proneness of object-oriented classes developed using highly iterative or agile software
development processes. Software Engineering, IEEE Transactions on. 33(6): p. 402-419.

 (Paper=71; T10=1; T11=2; T12=2: T13=3; T14=5; T15=1; T16=2; T18=NA; T19=1, 2, 5; T20/21=5,6; T22=2; T23=2; T24=n; T25=n)

[[72]] Oral, A.D. and A.B. Bener (2007). Defect prediction for embedded software in Computer and Information

Sciences, 2007. ISCIS 2007. IEEE 22nd International Symposium on. p. 1-6.
 (Paper=72; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=3; T18=1 3 7; T19=Not clear; T20/21=1,2; T22=1; T23=2; T24=n; T25=y)

[[73]] Ostrand, T., J. , E.J. Weyuker, and R.M. Bell (2004). Where the bugs are in Software testing and analysis,

Proceedings of the 2004 ACM SIGSOFT International symposium on Boston, Massachusetts, USA. p. 86-96:
ACM.

 28

 (Paper=73; T10=3; T11=2; T12=4: T13=1,2,3; T14=1; T15=2; T16=2; T18=NA; T19=1.1; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[74]] Ostrand, T.J. and E.J. Weyuker (2002). The distribution of faults in a large industrial software system in

Software testing and analysis, Proceedings of the 2002 ACM SIGSOFT International symposium on Roma,
Italy. p. 55-64: ACM.

 (Paper=74; T10=3; T11=2; T12=7: T13=1, 3; T14=1; T15=2; T16=2; T18=NA; T19=6, 3; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[75]] Ostrand, T.J., E.J. Weyuker, and R.M. Bell (2005). Predicting the location and number of faults in large

software systems. Software Engineering, IEEE Transactions on. 31(4): p. 340-355.
 (Paper=75; T10=3; T11=2; T12=4: T13=2,3; T14=1; T15=3; T16=2; T18=NA; T19=1.1; T20/21=5,1,4; T22=2; T23=2; T24=n; T25=n)

[[76]] Ostrand, T.J., E.J. Weyuker, and R.M. Bell (2005). Locating where faults will be in Diversity in computing,

Proceedings of the 2005 Conference on. Albuquerque, New Mexico, USA. p. 48-50: ACM.
 (Paper=76; T10=3; T11=2; T12=4: T13=1,2,3; T14=1; T15=2; T16=2; T18=NA; T19=1.1; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[77]] Ostrand, T.J., E.J. Weyuker, and R.M. Bell (2007). Automating algorithms for the identification of fault-

prone files in Software testing and analysis, Proceedings of the 2007 International symposium on London,
United Kingdom. p. 219-227: ACM.

 (Paper=77; T10=3; T11=4; T12=4: T13=2,3; T14=1; T15=2; T16=2; T18=NA; T19=1, 2; T20/21=3,7; T22=2; T23=2; T24=n; T25=n)

[[78]] Ostrand, T.J., E.J. Weyuker, R.M. Bell, and R.C.W. Ostrand (2005). A different view of fault prediction in

Computer Software and Applications Conference, 2005. COMPSAC 2005. 29th Annual International. p3-4
 (Paper=78; T10=3; T11=2; T12=4: T13=1,2; T14=NA; T15=2; T16=2; T18=NA; T19=1.1; T20/21=3; T22=2; T23=2; T24=n; T25=n)

[[79]] Padberg, F. (2002). Empirical interval estimates for the defect content after an inspection in Software

Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on p. 58-68.
 (Paper=79; T10=4; T11=1; T12=8: T13=5; T14=NA; T15=2; T16=5; T18=NA; T19=NA; T20/21=3,4; T22=2; T23=2; T24=n; T25=y)

[[80]] Padberg, F., T. Ragg, and R. Schoknecht (2004). Using machine learning for estimating the defect content

after an inspection. Software Engineering, IEEE Transactions on. 30(1): p. 17-28.
 (Paper=80; T10=2; T11=1; T12=8: T13=5; T14=NA; T15=2; T16=3; T18=1 3; T19=Not clear; T20/21=4; T22=2; T23=2; T24=n; T25=y)

[[81]] Pai, G.J. and J.B. Dugan (2007). Empirical Analysis of Software Fault Content and Fault Proneness Using

Bayesian Methods. Software Engineering, IEEE Transactions on. 33(10): p. 675-686.
 (Paper=81; T10=2; T11=1; T12=2: T13=3,5; T14=2; T15=3; T16=1; T18=1; T19=NA; T20/21=Not clear; T22=1; T23=2; T24=n; T25=y)

[[82]] Pelayo, L. and S. Dick (2007). Applying Novel Resampling Strategies To Software Defect Prediction in

North American Fuzzy Information Processing Society, 2007. NAFIPS '07. Annual Meeting of the. p. 69-72.
 (Paper=82; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=5; T19=NA; T20/21=Not clear; T22=2; T23=1; T24=n; T25=y)

[[83]] Pighin, M. and A. Marzona (2003). An Empirical Analysis of Fault Persistence Through Software Releases in

Empirical Software Engineering, Proceedings of the 2003 International Symposium: IEEE Computer Society.
 (Paper=83; T10=3; T11=1; T12=4: T13=1, 2,3; T14=4; T15=2; T16=2; T18=NA; T19=5; T20/21=3,7; T22=2; T23=2; T24=n; T25=n)

[[84]] Qinbao, S., M. Shepperd, M. Cartwright, and C.A.M.C. Mair (2006). Software defect association mining and

defect correction effort prediction. Software Engineering, IEEE Transactions on. 32(2): p. 69-82.
 (Paper=84; T10=2; T11=1; T12=2: T13=1,2; T14=NA; T15=1; T16=1; T18=7; T19=NA; T20/21=1,2; T22=2; T23=2; T24=y; T25=y)

[[85]] Rodriguez, D., R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz (2007). Detecting Fault Modules Applying

Feature Selection to Classifiers in Information Reuse and Integration, 2007. IRI 2007. IEEE International
Conference on. p. 667-672.
(Paper=85; T10=2; T11=1; T12=1: T13=1,3; T14=2; T15=1; T16=1; T18=2 7; T19=NA; T20/21=1; T22=2; T23=1; T24=y; T25=y)

[[86]] Schroter, A., T. Zimmermann, R. Premraj, and A. Zeller (2006). Where do bugs come from? ACM Sigsoft

Software Eng. Notes. 31(6): p. 1-2.
(Paper=86; T10=1; T11=2; T12=2: T13=1,2,3; T14=5; T15=2; T16=2; T18=NA; T19=3; T20/21=6; T22=2; T23=2; T24=n; T25=n)

[[87]] Schroter, A., T. Zimmermann, R. Premraj, and A. Zeller (2006). If your bug database could talk... (short

paper) in Empirical Software Engineering, Proceedings of the 5th International Symposium on p. 18–20.
(Paper=87; T10=1; T11=2; T12=5: T13=2,3,5; T14=2; T15=3; T16=2; T18=NA; T19=3; T20/21=6; T22=2; T23=2; T24=n; T25=n)

[[88]] Schroter, A., T. Zimmermann, and A. Zeller (2006). Predicting component failures at design time in

Empirical Software Engineering, Proceedings of the 5th International Symposium on. p. pages 18–27.
 (Paper=88; T10=1; T11=2; T12=2: T13=1; T14=NA; T15=1; T16=3; T18=1 4 5; T19=Not clear; T20/21=1; T22=2; T23=2; T24=n; T25=y)

 29

[[89]] Seliya, N., T.M. Khoshgoftaar, and S. Zhong (2005). Analyzing software quality with limited fault-proneness
defect data in High-Assurance Systems Engineering (HASE’05), Proc. of Ninth IEEE International
Symposium on p. 89–98.
(Paper=89; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=2 7; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[90]] Sherriff, M., S.S. Heckman, M. Lake, and L. Williams (2007). Identifying fault-prone files using static

analysis alerts through singular value decomposition in Center for advanced studies on Collaborative
research, Proceedings of the 2007 Conference of the Richmond Hill, Ontario, Canada. p. 276-279: ACM.

 (Paper=90; T10=3; T11=5; T12=4: T13=1,2,3; T14=2; T15=1; T16=6; T18=NA; T19=NA; T20/21=1,2; T22=2; T23=2; T24=n; T25=n)

[[91]] Sherriff, M., N. Nagappan, L. Williams, and M. Vouk (2005). Early estimation of defect density using an in-

process Haskell metrics model in Advances in model-based testing, Proceedings of the 1st International
workshop on St. Louis, Missouri. p. 1-6: ACM.

 (Paper=91; T10=3; T11=3; T12=3: T13=5; T14=NA; T15=2; T16=2; T18=NA; T19=1, 2, 4; T20/21=5,7; T22=2; T23=2; T24=n; T25=n)

[[92]] Śliwerski, J., T. Zimmermann, and A. Zeller (2005). When do changes induce fixes? in Mining software

repositories, Proceedings of the 2005 International workshop on St. Louis, Missouri. p. 1-5: ACM.
 (Paper=92; T10=1; T11=2; T12=2: T13=2; T14=NA; T15=1; T16=5; T18=NA; T19=NA; T20/21=Not clear; T22=2; T23=2; T24=n; T25=n)

[[93]] Stringfellow, C. and A. Andrews (2002). Deriving a Fault Architecture to Guide Testing. Software Quality

Control. 10(4): p. 299-330.
 (Paper=93; T10=3; T11=5; T12=3: T13=1; T14=NA; T15=3; T16=2; T18=NA; T19=1, 6; T20/21=Not clear; T22=2; T23=2; T24=n; T25=n)

[[94]] Succi, G., W. Pedrycz, M. Stefanovic, and J. Miller (2003). Practical Assessment of the Models for

Identification of Defect-prone Classes in Object-oriented Commercial Systems Using Design Metrics.
Journal of Systems and Software. 65(1): p. 1-12.
(Paper=94; T10=3; T11=1; T12=2: T13=3; T14=1,5; T15=2; T16=2; T18=NA; T19=1; T20/21=3,4; T22=2; T23=2; T24=n; T25=n)

[[95]] Sunghun, K., Pan, K., and Whitehead, E. E. (2006). Memories of bug fixes in Foundations of Software

Engineering, Proceedings of the 14th ACM SIGSOFT International Symposium on Portland, USA. p35-45
 (Paper=95; T10=1; T11=2; T12=3: T13=1,2; T14=NA; T15=1; T16=1; T18=2 7; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[96]] Thwin, M.M.T. and T.-S. Quah (2002). Application of neural network for predicting software development

faults using object-oriented design metrics in Neural Information Processing, 2002. ICONIP '02. Proceedings
of the 9th International Conference on. p. 2312-2316.

 (Paper=96; T10=3; T11=5; T12=7: T13=3; T14=4,5; T15=4; T16=3; T18=1 3; T19=1; T20/21=4,5,6; T22=2; T23=2; T24=n; T25=y)

[[97]] Tomaszewski, P., H. Grahn, and L. Lundberg (2006). A Method for an Accurate Early Prediction of Faults in

Modified Classes in Software Maintenance, 2006. ICSM '06. 22nd IEEE International Conference p487-496.
 (Paper=97; T10=3; T11=1; T12=2: T13=2; T14=NA; T15=3; T16=5; T18=7; T19=NA; T20/21=Not clear; T22=2; T23=2; T24=n; T25=n)

[[98]] Turhan, B. and A. Bener (2007). A Multivariate Analysis of Static Code Attributes for Defect Prediction in

Quality Software, 2007. QSIC '07. Seventh International Conference on p. 231-237.
(Paper=98; T10=2; T11=1; T12=1: T13=3; T14=2; T15=3; T16=1; T18=1 7; T19=NA; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[99]] Vivanco, R. (2007). Improving Predictive Models of Software Quality Using an Evolutionary Computational

Approach in Software Maintenance, 2007. ICSM 2007. IEEE International Conference on. p. 503-504.
 (Paper=99; T10=3; T11=2; T12=2: T13=3; T14=2; T15=3; T16=3; T18=1 7; T19=Not clear; T20/21=Not clear; T22=2; T23=2; T24=n; T25=y)

[[100]] Weyuker, E., J. , T. Ostrand, J. , and R. Bell, M. (2007). Using Developer Information as a Factor for Fault

Prediction in Predictor Models in Software Engineering, Proceedings of the Third International Workshop on
IEEE Computer Society.

 (Paper=100; T10=3; T11=5; T12=4: T13=2; T14=NA; T15=3; T16=2; T18=NA; T19=1.1; T20/21=1; T22=2; T23=2; T24=n; T25=n)

[[101]] Williams, C.C. (2005). Automatic Mining of Source Code Repositories to Improve Bug Finding Techniques.

Software Engineering, IEEE Transactions on. 31(6): p. 466-480.
 (Paper=101; T10=1; T11=1; T12=3: T13=2; T14=NA; T15=3; T16=1; T18=1 7; T19=NA; T20/21=2,1; T22=2; T23=2; T24=n; T25=n)

[[102]] Wohlin, C., M. Host, and M.C. Ohlsson (2000). Understanding the sources of software defects: a filtering

approach in Program Comprehension, 2000. Proceedings. IWPC 2000. 8th International Workshop. p. 9-17.
 (Paper=102; T10=3; T11=3; T12=8: T13=3,5; T14=2; T15=2; T16=3; T18=7; T19=Not clear; T20/21=6; T22=2; T23=2; T24=n; T25=n)

[[103]] Xing, F., P. Guo, and M.R. Lyu (2005). A novel method for early software quality prediction based on

support vector machine in Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International
Symposium on. p. 10 pp.

 30

 (Paper=103; T10=3; T11=3; T12=1: T13=3,5; T14=5,7; T15=1; T16=1; T18=4; T19=NA; T20/21=2; T22=2; T23=2; T24=n; T25=y)

[[104]] Yu, P., T. Systa, and H. Muller (2002). Predicting Fault-Proneness Using OO Metrics: An Industrial Case

Study in European Conference Software Maintenance and Reeng. (CSMR 2002), Proc. Sixth p. 99-107.
 (Paper=104; T10=3; T11=1; T12=1: T13=3; T14=2; T15=3; T16=2; T18=NA; T19=1, 2, 3; T20/21=5,7; T22=2; T23=2; T24=n; T25=n)

[[105]] Zhang, H. and X. Zhang (2007). Comments on "Data Mining Static Code Attributes to Learn Defect

Predictors". Software Engineering, IEEE Transactions on. 33(9): p. 635-637.
(Paper=105; T10=2; T11=4; T12=1: T13=3; T14=2; T15=1; T16=1; T18=1; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[106]] Zhiwei, X., T.M. Khoshgoftaar, and E.B. Allen (2000). Prediction of software faults using fuzzy nonlinear

regression modeling in High Assurance Systems Engineering, 2000, Fifth IEEE International Symposim on.
HASE 2000. p. 281-290.

 (Paper=106; T10=3; T11=3; T12=1: T13=3,5; T14=2; T15=2; T16=1; T18=3; T19=NA; T20/21=3,4; T22=2; T23=2; T24=n; T25=y)

[[107]] Zhou, Y. and H. Leung (2006). Empirical Analysis of Object-Oriented Design Metrics for Predicting High

and Low Severity Faults. Software Engineering, IEEE Transactions on. 32(10): p. 771-789.
(Paper=107; T10=2; T11=1; T12=2: T13=3; T14=1,5; T15=3; T16=3; T18=1,6; T19=1; T20/21=1; T22=1; T23=1; T24=y; T25=y)

[[108]] Zimmermann, T. and N. Nagappan (2007). Predicting Subsystem Failures using Dependency Graph

Complexities in Software Reliability, 2007. ISSRE '07. The 18th IEEE International Symposium. p. 227-236.
 (Paper=108; T10=3; T11=3; T12=5: T13=3; T14=4; T15=2; T16=2; T18=NA; T19=1,3,4; T20/21=7; T22=2; T23=2; T24=n; T25=y)

[[109]] Zimmermann, T., R. Premraj, and A. Zeller (2007). Predicting Defects for Eclipse in Predictor Models in

Software Engineering, Proceedings of the Third International Workshop on IEEE Computer Society.
 (Paper=109; T10=1; T11=2; T12=2: T13=1,3; T14=4; T15=3; T16=2; T18=NA; T19=1, 3; T20/21=5,1,6,2; T22=2; T23=2; T24=y; T25=n)

[[110]] Gondra, I. 2008. Applying machine learning to software fault-proneness prediction. J. Syst. Softw. 81, 2

(Feb. 2008), 186-195.
(Paper=110; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=3,4; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=y)

[[111]] D'Ambros, M., Lanza, M., and Robbes, R. 2009. On the Relationship Between Change Coupling and

Software Defects. In Proceedings of the 2009 16th Working Conference on Reverse Engineering (October 13
- 16, 2009). WCRE. IEEE Computer Society

 (Paper=111; T10=1; T11=2; T12=2: T13=2; T14=NA; T15=2; T16=2; T18=NA; T19=1; T20/21=5,7; T22=2; T23=2; T24=n; T25=y)

[[112]] Kastro, Y. and Bener, A. B. 2008. A defect prediction method for software versioning. Software Quality

Journal 16, 4 (Dec. 2008), 543-562
(Paper=112; T10=1; T11=5; T12=9: T13=1,2; T14=NA; T15=1; T16=1; T18=3; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[113]] Turhan, B., Kocak, G., and Bener, A. 2009. Data mining source code for locating software bugs: A case

study in telecommunication industry. Expert Syst. Appl. 36, 6 (Aug. 2009), 9986-9990
(Paper=113; T10=4; T11=5; T12=1: T13=3; T14=3,4; T15=1; T16=1; T18=1; T19=NA; T20/21=8; T22=2; T23=2; T24=n; T25=n)

[[114]] Elish, K. O. and Elish, M. O. 2008. Predicting defect-prone software modules using support vector

machines. J. Syst. Softw. 81, 5 (May. 2008), 649-660.
(Paper=114; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=4; T19=NA; T20/21=1,7; T22=2; T23=2; T24=n; T25=y)

[[115]] Pendharkar, P. C. 2010. Exhaustive and heuristic search approaches for learning a software defect prediction

model. Eng. Appl. Artif. Intell. 23, 1 (Feb. 2010), 34-40, available on-line in 2009 – hence inclusion
(Paper=115; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=3, 5; T19=NA; T20/21=9; T22=2; T23=2; T24=n; T25=y)

[[116]] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and Thambidurai, P. 2007. Object-oriented software

fault prediction using neural networks. Inf. Softw. Technol. 49, 5 (May. 2007), 483-492.
(Paper=116; T10=5; T11=1; T12=2: T13=3; T14=1,3; T15=1; T16=3; T18=3; T19=1; T20/21=1,2; T22=1; T23=0; T24=y; T25=y)

[[117]] Turhan, B., Kocak, G., and Bener, A. 2008. Software Defect Prediction Using Call Graph Based Ranking

(CGBR) Framework. In Proceedings of the 2008 34th Euromicro Conference Software Engineering and
Advanced Applications (September 03 - 05, 2008).

 (Paper=117; T10=3; T11=1; T12=1: T13=3; T14=1,3; T15=1; T16=1; T18=1; T19=NA; T20/21=1,2; T22=1; T23=2; T24=n; T25=y)

[[118]] Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., and Haesen, R. 2008. Mining software

repositories for comprehensible software fault prediction models. J. Syst. Softw. 81, 5 (May. 2008), 823-839.
(Paper=118; T10=2; T11=1; T12=1: T13=3; T14=2; T15=1; T16=1; T18=7; T19=NA; T20/21=1,7; T22=2; T23=1; T24=y; T25=y)

 31

[[119]] Rana, Z. A., Shamail, S., and Awais, M. M. 2009. Ineffectiveness of Use of Software Science Metrics as
Predictors of Defects in Object Oriented Software. In Proceedings of the 2009 WRI World Congress on
Software Engineering - Volume 04 (May 19 - 21, 2009). WCSE. IEEE Computer Society
(Paper=119; T10=2; T11=1; T12=1: T13=3; T14=4; T15=1; T16=1; T18=1,5; T19=NA; T20/21=1; T22=1; T23=2; T24=y; T25=n)

[[120]] Mende, T., Koschke, R., and Leszak, M. 2009. Evaluating Defect Prediction Models for a Large Evolving

Software System. In Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering (March 24 - 27, 2009). CSMR. IEEE Computer Society
(Paper=120; T10=3; T11=1; T12=4: T13=2,3; T14=4; T15=1; T16=1; T18=6; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[121]] Calikli, G.; Tosun, A.; Bener, A.; Celik, M.; 2009. The effect of granularity level on software defect

prediction. Computer and Information Sciences. ISCIS 2009. 24th International Symposium on 14-16 Sept.
2009 Page(s):531 - 536

 (Paper=121; T10=1; T11=1; T12=7: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=1; T19=NA; T20/21=1,9; T22=2; T23=2; T24=n; T25=y)

[[122]] Selvarani, R.; Nair, T.R.G.; Prasad, V.K. 2009. Estimation of Defect Proneness Using Design Complexity

Measurements in Object-Oriented Software. International Conference on Signal Processing Systems, 15-17
May 2009 Page(s):766 – 770
(Paper=122; T10=3; T11=2; T12=7: T13=3; T14=4; T15=1; T16=6; T18=NA; T19=NA; T20/21=8; T22=2; T23=2; T24=n; T25=n)

[[123]] Wong, W. E., Horgan, J. R., Syring, M., Zage, W., and Zage, D. 2000. Applying design metrics to predict

fault-proneness: a case study on a large-scale software system. Softw. Pract. Exper. 30, 14, 1587-1608.
(Paper=123; T10=3; T11=1; T12=8: T13=3; T14=3; T15=1; T16=2; T18=NA; T19=5; T20/21=1; T22=2; T23=2; T24=n; T25=n)

[[124]] Singh, Y., Kaur, A., and Malhotra, R. 2008. Predicting Software Fault Proneness Model Using Neural

Network. In Proceedings of the 9th international Conference on Product-Focused Software Process
Improvement (Monte Porzio Catone, Italy, June 23 - 25, 2008). A. Jedlitschka and O. Salo, Eds. Lecture
Notes in Computer Science, vol. 5089. Springer-Verlag, Berlin, Heidelberg, 204-214.
(Paper=124; T10=2; T11=3; T12=7: T13=3; T14=3,4; T15=1; T16=3; T18=3; T19=1; T20/21=1; T22=2; T23=0; T24=n; T25=y)

[[125]] Guo, P., & Lyu, M. R. (2000). Software quality prediction using mixture models with EM algorithm. In First

Asia-Pacific Conference on Quality Software (pp. 69–80). Hong Kong, China: IEEE Computer Society.
 (Paper=125; T10=3; T11=3; T12=1: T13=3; T14=1,4; T15=1; T16=2; T18=NA; T19=6; T20/21=2,4; T22=2; T23=2; T24=n; T25=n)

[[126]] Schneidewind, N. F. (2001). Investigation of logistic regression as a discriminant of software quality. In

Seventh international symposium on software metrics (328–337). Washington, DC: IEEE Computer Society.
 (Paper=126; T10=3; T11=5; T12=1: T13=3; T14=1,2,4; T15=1; T16=2; T18=NA; T19=1; T20/21=2,4; T22=2; T23=2; T24=n; T25=n)

[[127]] Yuan, X., Khoshgoftaar, T. M., Allen, E. B., & Ganesan, K. (2000). An application of fuzzy clustering to

software quality prediction. In Third IEEE symposium on application-specific systems and software
engineering technology (p. 85). Washington, DC: IEEE Computer Society.

 (Paper=127; T10=3; T11=5; T12=1: T13=3; T14=1,2,3; T15=1; T16=2; T18=NA; T19=1; T20/21=1,2; T22=2; T23=2; T24=n; T25=n)

[[128]] Khoshgoftaar, T. M., Allen, E. B., & Busboom, J. C. (2000). Modeling software quality: The software

measurement analysis and reliability toolkit. In Twelfth IEEE international conference on tools with artificial
intelligence (pp. 54–61). Vancouver, BC, Canada: IEEE Computer Society.
(Paper=128; T10=3; T11=3; T12=1: T13=3; T14=1,3; T15=1; T16=3; T18=5; T19=6; T20/21=2; T22=2; T23=2; T24=n; T25=y)

[[129]] Khoshgoftaar, T. M., Geleyn, E., & Gao, K. (2002). An empirical study of the impact of count models

predictions on module-order models. In Eighth international symposium on software metrics (pp. 161–172).
Ottawa, Canada: IEEE Computer Society.
(Paper=129; T10=3; T11=1; T12=1: T13=3; T14=1,2; T15=2; T16=2; T18=NA; T19=6; T20/21=4; T22=2; T23=2; T24=n; T25=y)

[[130]] Khoshgoftaar, T. M. (2002). Improving usefulness of software quality classification models based on

boolean discriminant functions. In Thirteenth international symposium on software reliability engineering
(pp. 221–230). Annapolis, MD, USA: IEEE Computer Society.

 (Paper=130; T10=3; T11=3; T12=8: T13=3; T14=1,2,4; T15=1; T16=2; T18=NA; T19=6; T20/21=2; T22=2; T23=2; T24=n; T25=n)

[[131]] Khoshgoftaar, T. M., & Seliya, N. (2002). Software quality classification modeling using the SPRINT

decision tree algorithm. In Fourth IEEE international conference on tools with artificial intelligence (pp. 365–
374). Washington, DC: IEEE Computer

 (Paper=131; T10=3; T11=5; T12=1: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=5; T19=NA; T20/21=1,2; T22=2; T23=2; T24=y; T25=n)

[[132]] Khoshgoftaar, T. M., Seliya, N., & Gao, K. (2005). Assessment of a new three-group software quality

classification technique: An empirical case study. Empirical Software Engineering, 10(2), 183–218.

 32

 (Paper=132; T10=3; T11=1; T12=1: T13=3; T14=1,2,3,4; T15=1; T16=3; T18=5; T19=6; T20/21=2; T22=2; T23=2; T24=n; T25=y)

[[133]] Pizzi, N. J., Summers, R., & Pedrycz, W. (2002). Software quality prediction using median-adjusted class

labels. In International joint conference on neural networks (pp. 2405–2409). Honolulu, HI: IEEE Comp Soc
 (Paper=133; T10=5; T11=4; T12=2: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=3; T19=NA; T20/21=1,2; T22=1; T23=2; T24=y; T25=n)

[[134]] Reformat, M. (2003). A fuzzy-based meta-model for reasoning about number of software defects. In Tenth

international fuzzy systems association world congress, Istanbul, Turkey (pp. 644–651).
 (Paper=134; T10=3; T11=4; T12=1: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=3; T19=NA; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[135]] Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., and Jiang, Y. 2008. Implications of ceiling effects in

defect predictors. In Proceedings of the 4th international Workshop on Predictor Models in Software
Engineering (Leipzig, Germany, May 12 - 13, 2008). PROMISE '08.

 (Paper=135; T10=2; T11=1; T12=1: T13=3; T14=1,2,4; T15=1; T16=1; T18=1, 5; T19=NA; T20/21=1; T22=2; T23=1; T24=n; T25=y)

[[136]] Mahaweerawat, A., Sophasathit, P., & Lursinsap, C. (2002). Software fault prediction using fuzzy clustering

and radial basis function network. International conference on intelligent technologies, Vietnam (p304–313).
 (Paper=136; T10=6; T11=5; T12=9: T13=3; T14=1,2,3; T15=1; T16=1; T18=2,3; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[137]] Mahaweerawat, A., Sophatsathit, P., Lursinsap, C., & Musilek, P. (2004). Fault prediction in object-oriented

software using neural network techniques. In Proceedings of the InTech conference, Houston, pp. 27–34
 (Paper=137; T10=1; T11=1; T12=2: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=3; T19=NA; T20/21=1,2; T22=1; T23=1; T24=y; T25=n)

[[138]] Mahaweerawat, A., Sophatsathit, P., & Lursinsap, C. (2007). Adaptive self-organizing map clustering for

software fault prediction. In Fourth international joint conference on computer science and software
engineering, Khon Kaen, Thailand (pp. 35–41).

(Paper=138; T10=6; T11=5; T12=1: T13=3; T14=1,2,4; T15=1; T16=1; T18=3; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[139]] Menzies, T., & Di Stefano, J. S. (2004). How good is your blind spot sampling policy? In Eighth IEEE

international symposium on high-assurance systems engineering (pp. 129–138). Tampa, FL, USA: IEEE
(Paper=139; T10=2; T11=1; T12=1: T13=3; T14=1,2,4; T15=1; T16=3; T18=5; T19=1; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[140]] Zhong, S., Khoshgoftaar, T. M., Seliya, N. (2004). Unsupervised learning for expert-based software quality

estimation. In Eighth IEEE international symposium on high assurance systems engineering (p149–155).
 (Paper=140; T10=2; T11=1; T12=1: T13=3; T14=1,2,4; T15=1; T16=3; T18=2,3; T19=Not clear; T20/21=1,2; T22=2; T23=2; T24=n; T25=y)

[[141]] Mertik, M., Lenic, M., Stiglic, G., & Kokol, P. (2006). Estimating software quality with advanced data

mining techniques. In International conference on software engineering advances (p.19). Papeete, Tahiti,
French Polynesia: IEEE Computer Society.

 (Paper=141; T10=2; T11=5; T12=1: T13=3; T14=1,2,4; T15=1; T16=1; T18=4,5,7; T19=NA; T20/21=1; T22=2; T23=2; T24=y; T25=n)

[[142]] Boetticher, G. (2006). Improving credibility of machine learner models in software engineering. Advanced

machine learner applications in software engineering. Series on software engineering and knowledge
engineering. Hershey, PA, USA: Idea Group Publishing.

 (Paper=142; T10=2; T11=1; T12=1: T13=3; T14=1,2,4; T15=1; T16=3; T18=1,2,5; T19=Not clear; T20/21=1,2; T22=1; T23=2; T24=y; T25=y)

[[143]] Yang, B., Yao, L., & Huang, H. Z. 2007. Early software quality prediction based on a fuzzy neural network

model. In Third international conference on natural computation, Haikou, Çin (pp. 760–764).
(Paper=143; T10=6; T11=5; T12=1: T13=3; T14=1,2,3,4; T15=1; T16=1; T18=3; T19=NA; T20/21=8; T22=2; T23=2; T24=n; T25=n)

[[144]] Turhan, B., Menzies, T., Bener, A. B., and Di Stefano, J. 2009. On the relative value of cross-company and

within-company data for defect prediction. Empirical Softw. Engg. 14, 5
 (Paper=144; T10=4; T11=4; T12=1: T13=3; T14=1,2,4; T15=1; T16=3; T18=1,2; T19=Not clear; T20/21=1; T22=2; T23=2; T24=n; T25=y)

[[145]] Weyuker, E. J., Ostrand, T. J., and Bell, R. M. 2008. Do too many cooks spoil the broth? Using the number

of developers to enhance defect prediction models. Empirical Softw. Engg. 13, 5 (Oct. 2008), 539-559.
(Paper=145; T10=3; T11=4; T12=1: T13=2,3; T14=1,2,4; T15=1; T16=2; T18=NA; T19=1; T20/21=8; T22=2; T23=2; T24=n; T25=n)

[[146]] Jiang, Y., Cukic, B., and Ma, Y. 2008. Techniques for evaluating fault prediction models. Empirical Softw.

Engg. 13, 5 (Oct. 2008), 561-595.
 (Paper=146; T10=2; T11=4; T12=1: T13=3; T14=1,2,4; T15=1; T16=3; T18=1,2,6; T19=1; T20/21=1,4,7; T22=1; T23=2; T24=y; T25=y)

[[147]] Khoshgoftaar, T. M., Yuan, X., Allen, E. B., Jones, W. D., and Hudepohl, J. P. 2002. Uncertain

Classification of Fault-Prone Software Modules. Empirical Softw. Engg. 7, 4 (Dec. 2002), 297-318
(Paper=147; T10=3; T11=3; T12=1: T13=3; T14=1,2,4; T15=1; T16=1; T18=5; T19=NA; T20/21=2; T22=2; T23=2; T24=y; T25=n)

 33

[[148]] Khoshgoftaar, T. M., Seliya, N., and Gao, K. 2005. Assessment of a New Three-Group Software Quality
Classification Technique: An Empirical Case Study. Empirical Softw. Engg. 10, 2 (Apr. 2005), 183-218.

(Paper=148; T10=3; T11=3; T12=1: T13=3; T14=1,2,4; T15=1; T16=1; T18=5; T19=NA; T20/21=2; T22=2; T23=2; T24=y; T25=n)

Appendices

Appendix A: Search string

The following search string was used in our searches:

(Fault* OR bug* OR defect* OR errors OR corrections OR corrective OR fix*) in title only
AND (Software) anywhere in study

Appendix B: Conferences and journals manually searched

Conference manually searched

Journals manually searched

International Conference on Software Engineering (ICSE) IEEE Transactions of Software
Engineering

International Conference on Software Maintenance (ICSM) Journal of Systems and Software
IEEE Int’l Working Conference on Source Code Analysis
and Manipulation (SCAM)

Journal of Empirical Software Engineering

International Conference on Automated Software
Engineering

Software Quality Journal

IEEE International Symposium and Workshop on
Engineering of Computer Based Systems

Information & Software Technology

International Symposium on Automated Analysis-driven
Debugging

International Symposium on Software Testing and Analysis
(ISSTA)

International Symposium on Software Reliability
Engineering

ACM SIGPLAN Conference on Programming language
Design and Implementation

Int’l Workshop on Mining Software Repositories
Empirical Software Engineering & Measurement
PROMISE
Foundations of Software Engineering

 34

Appendix C: Publication Sources

Journals
(where more than 1 study has been published)

Number of
included studies

IEEE Transactions on Software Engineering 17
Empirical Software Engineering 5
Journal of Systems and Software 5
Journals where only 1 study published 11
Total 38

Proceedings
(where more than 1 study has been published)
Automated Software Engineering, Int'l conference on 4
Computer Software and Applications Conference (COMPSAC), Int'l conference 2
Empirical Software Engineering and measurement, Int' Symposium on 8
European Conference Software Maintenance and Reeng. (CSMR), Proc. of 3
Euromicro conference 3
Foundations of SE, Int'l symposium on 2
High-Assurance Systems Engineering (HASE), International Symposium on 4
Mining software repositories, International workshop on 3
Neural networks (IJCNN), International conference on 2
Predictor Models in Software Engineering (PROMISE), Int'l workshop on 4
SIGPLAN SIGSOFT 10
Software Engineering, Int'l Conference (ICSE) 10
Software Maintenance, Int'l Conf on (ICSM) 3
Software Reliability Engineering, Int'l conference on (ISSRE) 12
Software Testing and analysis, Int'l Symposium on (ISSTA) 2
Conferences where only 1 study published 38

Total 110

Appendix D. Classification of static code metrics

1 Size LOC/size (incl comments per LOC etc)
2 General Various general SCMs listed (often many used), typically metrics

data available from NASA datasets
3 Structure Including coupling, cohesion and inheritance, system architecture,

CK metrics
4 Complexity Includes Halstead and McCabe
5 Other Includes code clones (code fragments and language constructs)

variables/types of statements (e.g. global variables, incoming and
outgoing variable accesses, ’var’ statements, ‘retrieve’ statements

 35

Appendix E: Statistics used in fault prediction studies

Statistical approach Approach includes

1. Regression • Negative binomial.

• Poisson regression/zero-inflated Poisson regression, Loglinear regression,
Bernoulli regression, regularised logistic regression, logistic regression
(including stepwise and exact), binary logistic regression, risk coefficient

• Linear regression, generalized linear regression, multiple regression, multiple
linear regression,

• Non-linear regression, non linear least squares regression
• logarithmic, exponential models
• Univariate modelling
• Multivariate modelling

2. Compare means/variances/
significance test

t-statistic, t-test, ANOVA, F-Test, discriminant analysis, variance inflation factor,
chi-square

3. Correlation Spearman/Spearman’s rank correlation, Pearson correlation/Pearson product-
moment correlation, Kendall’s rank correlation, Bravais, scatterplots,

4. Feature/model selection Principal component analysis (PCA), Akaike Information Criterion
5. Descriptive stats Mean, standard deviation, confidence interval, median, inter-quartile range,

percentage
6. Other Impact analysis, pairwise intersections, Cox proportional hazards, Varimax

rotation, Alberg diagram

Appendix F: Lessman classification scheme used to classify type of machine learning
approach used in studies

Classification model Approaches included

1. Statistical classifiers • Linear Discriminant Analysis
• Quadratic Discriminant Analysis
• Logistic Regression
• Naïve Bayes
• Bayesian Networks
• Least-Angle Regression
• Relevance Vector Machine

2. Nearest neighbour methods • kNearest Neighbour
• K-Nearest Neighbour

3. Neural networks • Multi-Layer Perceptron
• Radial Basis Function Network

4. Support vector machine-based • Support vector machine
• Lagrangian
• Least Squares SVN
• Linear Programming
• Voted Perceptron

5. Decision tree approaches • C 4.5 Decision Tree
• Classification and Regression Tree
• Alternating Decision Tree

6. Ensemble methods • Random Forest
• Logistic Model Tree

 36

Appendix G: Classification of how studies balance data

Data balancing used

Approach Description
0 Data already balanced The data set contained a balanced set of

faulty as opposed to non-faulty modules
1 True balancing of data Use of over/under sampling methods,

SMOTE, etc to achieve a 50/50 split of
faulty v non-faulty code units

2 No explicit data balancing
done

Imbalanced data used; no balancing
reported; statistical techniques applied

Appendix H. Classification of how categorical studies have measured model performance

Performance Indicator

Examples

1. Confusion Matrix related
composite measures

F-measure, Recall, Precision, Accuracy, misclassification
rate/error-rate, Sensitivity, Specificity, pd, pf, Balance,
correctness, completeness, AUC (ROC)

2. Confusion Matrix constructs Rates of: FP, TN, FN, TP
Type I = false positive (FP); Type II = false negative (FN)

Appendix I. Classification of how continuous studies have measured model
performance

Performance Indicator

Examples

Error rates MRE, MAE, PRED, standard error, absolute error, jack-
knife error etc)

Regression coefficient

Best R ~/R2

Correlation test Pearson, Spearman

Variance significance test t-test, F-test, goodness of fit, chi square, p-value

Other Theil forecasting stat

	Cover Page Tech Report SB.pdf
	SLR Fault Prediction submitted TSE NEW.pdf

