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ABSTRACT 

Early system requirements are often captured by declarative and property-

based artifacts, such as scenarios and goals. While such artifacts are intuitive 

and useful, they are partial and typically lack an overarching structure to 

allow systematic elaboration of the partial behaviors they denote. We 

propose a structuring approach appropriate for scoping different partial 

behaviors, focusing on scenario-based behavior specifications. The approach 

is based on Parnas’ notions of ‘modes’ and ‘mode-classes’, where a mode is 

a set of states that satisfy some predicate, and a mode-class is a collection of 

disjoint modes that partitions the system’s state-space so that each state 

belongs to exactly one mode. There may be several mode-classes, in which 

case every state belongs to exactly one mode from each mode-class. We 

structure a scenario by partitioning its observed states into modes, allowing 

elaboration of the scenario’s parts independently without losing the overall 

system view. Having every scenario partitioned via a suitable mode-class, we 

merge the mode-classes constructively to build a single behavioral model of 

the system. We argue that our approach facilitates early refinement and an 

improved coverage of requirements, as well as improved generation of 

system models from partial behaviors. We provide a sound formal model of 

modes, based on which we detail a novel technique to synthesize a prototype 

of system behavior, given a set of scenarios and corresponding mode-classes 

specifications as input. 

Keywords 

Mode-based design, Behavioral-models synthesis, State-space partitioning. 

1. INTRODUCTION 

At early stage of development, designers often have little or vague information 

regarding requirements and the given information is subject to frequent changes. This 

can result in too much iteration between design and requirements specification 

activities. A general solution for overcoming these problems is prototyping system 

behavior to be used for early reasoning and elaboration. However, vagueness about 

behavior space and varieties of sources of requirements results in specifications that are 

unstructured and partial. Partial specifications are commonly captured via intuitive 

artifacts such as goals [1],[2] and properties [3], also known as declarative 

specifications. Another type of partial specification, of particular interest to this report, 

is scenario-based specifications [4, 5]. 

The problem with partial specifications is that designers will be unable to (1) ensure 

space-coverage of prospective system behavior, nor (2) reason about system-level 

properties that cross boundaries of the individual specifications fragments (such as 

scenarios). Both issues require a system model that spans the behavior space and that 

can successfully glue the isolated behaviors together into one integrated behavioral 

model.  

Several  approaches, however, have attempted a (semi-) automatic synthesis of system-

level (e.g. [6]) and component-level models (e.g. [7, 8]) from partial specifications. A 

common characteristic of these approaches is that they address the symptom of the 

problem: partiality, instead of its cause: the lack of a proper overarching structure of the 

system behavior.  More specifically, most approaches rely on unstructured scenarios 



specifications without providing contextual information defined for individual snippets 

of the specifications so as to organize them and relate them in the system’s state-space.  

A lack of such contextual information leaves system designers with no option other 

than ad hoc specifications, and no criteria to decide when (i.e. at which state) to start a 

scenario and when to stop it. This leads to implicit traversing of inter-contexts, which in 

turn impedes the opportunities to elaborate the individual behaviors and discover more 

requirements. Synthesis techniques that rely on unstructured specifications pose 

problems such as: 

 

(1) Restrictive assumptions; e.g., scenarios should start at an initial state [6] which is 

not necessarily the case for all possible scenarios. 

(2) Problems arise when merging the independently-generated behaviors from the 

partial specifications. For example, generation of nondeterministic transitions [8] 

and unavailability of a common refinement [6]. 

Our hypothesis is that the provision of system contextual information allows us to 

scope and structure partial specifications, and enables improved coverage of 

requirements. This in turn will expose more opportunities for requirements elaboration 

and, when gaps are discovered, new requirements are elicited. In this report, we propose 

an approach for structuring the partial specifications by specifying them under pre-

defined scopes or contexts. A system context is a (compound) condition of the system, 

defined as a predicate over system variables. The system state space is structured into a 

set of contexts, where different pieces of specifications (e.g., different scenarios) are 

defined exclusively within the scope of these contexts. Our structuring approach is 

based on a disciplined partitioning of system state space using Parnas’ notion of mode-

classes as introduced in A-7E project [9, 10]. A mode-class completely partitions the 

state-space into disjoint clusters or modes. Every mode is simply defined as a predicate 

over system variables.  

It worth noting that the term ‘mode’ is defined and used for two fundamentally different 

purposes in the computing literature: modal logic [11] and hybrid systems [12]. The 

concept we use here originates in the latter. 

The next section of this report provides a brief background on behavioral modeling 

approaches and synthesis from partial specifications (Section 2.1) and then we describe 

an example motivating our approach (Section 2.2). Section 3 provides definitions and 

basic formal basis of the modes and mode-class notions. Based on this formal model of 

modes, we describe in Section 4 a synthesis technique that accepts structured 

specifications in the form of scenarios organized with mode-classes and, as output, it 

generates an integrated state-based model of the system. Related work is discussed in 

Section 5. 

2. BACKGROUND AND MOTIVATION 

In this section, we, firstly, provide some background on scenario-based specifications 

and different behavioral modeling approaches. Secondly, we motivate our approach by 

an example system. 



2.1 Background 

2.1.1 Scenario-Based Partial Specifications 

There are a variety of ways of describing scenarios. This ranges from informal UML 

sequence diagrams [4], possibly annotated with OCL pre/post constraints, to a more 

formal Message Sequence Charts, MSC, [5]. An overview of the spectrum of different 

dialects of scenario-based specifications can be found in [13]. A higher-level form of 

scenarios such as higher-level MSC (hMSC) [14] and interaction overview diagrams 

(IOD) [4], provide a flowchart-like composition of lower-level scenarios, which is still 

a form of scenario involving some control-flow constructs. To focus on the ideas here, 

we use basic sequence diagrams, where operations are annotated with pre/post 

conditions in the form of valuations of the vector of system variables. 

Despite the debate [15],[16],[17] about what a scenario really is, a general accepted 

interpretation is a sequence of interactions steps between the computer system and the 

outside environment. A scenario is partially describing the computer system behavior 

because it specifies its reactions to the environment’s stimuli as far as the scenario is 

concerned. So, the scenario specifications completely specify the computer system 

behavior only if they specify all possible environment stimuli and possible 

combinations. In practice, however, such complete requirements are not readily 

available, particularly at early development stage. A fundamental reason is that, 

typically, scenarios are provided by different stakeholders with different viewpoints and 

needs [18]. 

From an automata-based viewpoint, each step in a scenario (action on, or reaction from, 

the computer system) is perceived as the progress of the system’s automaton in the 

sense that each step modifies one or more domain variables. In a scenario involving a 

computer system represented as one component, the successive scenario steps induce an 

automaton1 representing a black-box (or interface) behavior of the computer system 

with respect to its environment. However, in the presence of structural decomposition 

of the computer system itself, architects are also interested in scenarios describing 

interactions between the system’s internal components. In the latter case, the scenario 

steps induce an automaton representing a clear-box internal behavior describing how 

the system implements its reactions in terms of cooperation between its internal 

components (note that the induced states involve domain variables plus system-internal 

variables). 

This observation, amongst others, has motivated several approaches (cf. [6],[7],[8]) to 

exploit scenario-based specifications for the purpose of synthesizing an integrated 

automata-based behavioral model of the system, given a set of scenarios (or other forms 

of partial specifications) as input. A common denominator of these approaches is the 

focus on issues related to partiality of specifications, such as detecting negative-

scenarios , implied scenarios [19], and merging behaviors that are independently 

compiled from separate scenarios [20]. Synthesis processes developed in these 

approaches have raised some issues. For example, constraining the scenarios by 

assumptions such as scenario must start from the system’s initial-state [6]. The 

partiality-related issues have distracted the synthesis techniques to solve these issues 

than to focus on the other challenges of the synthesis process itself. So, in our research 

work we pay attention to minimize partiality in the specifications before the synthesis. 
                                                                 

1 The reader should remember that this automaton is (typically) just a navigation path in the complete system’s 

observable behavior. 



The ultimate way to reducing partiality in specifications is to maximize the 

opportunities of elaboration and elicitations of requirements, ideally before the 

synthesis phase. We propose in this report an approach attempting to maximize such 

opportunities, making use of the two most fundamental principles of software 

engineering: abstraction and separation of concerns. We partition the state space 

completely into a manageable set of disjoint sub-spaces each of which represents a 

context of the system, and then we specify scenarios within those contexts. The inter-

contexts transitions are represent as transitions between the scenarios. We use the 

notion of mode-classes, early introduced by Parnas [9, 21], to model the partitioning of 

state-space. Modes provide the necessary abstraction of the state space, which is 

necessary at early stages of developments where incomplete information about the 

individual system states is known. The exclusive (i.e. disjoint) contexts provide the 

separation of concerns between different scenarios and hence increase the opportunity 

for their elaboration. 

 

2.1.2 Behavior Abstraction 

Compared to the established structural modeling frameworks, such as the popular 

object-orientation [4] and the original work of modular design [22], there is a limited 

support for behavior modeling and composition. Typically, system behavior modeling 

follows structural decompositions.  For example, it is not uncommon for designers to 

specify the automaton of each individual component and then use automata-

composition techniques to construct a system behavioral model. A Scenario between 

the system’s components is another example of a behavioral model that follows 

structural decomposition––interactions between components are based on their 

relationships in the structural model (e.g., require/provide interfaces of each 

component). 

Behavior formalisms such as process algebras and communicating automata are mainly 

focused on issues related to parallelism among a set of interacting processes which are 

serving as placeholders for components. On the other hand, hierarchical state-based 

formalisms do not provide appropriate abstractions in sense of the Dijkstra’s sound 

definition quoted in [23]: an abstraction “is one thing that represents several real things 

equally well”. 

From an automata-based viewpoint, an abstraction hides unimportant details about state 

information and shows those details of interest in the abstract model. Models based on 

the concept of hierarchical states [24], [25] do not abstract states information, but rather 

they factor-out state information and show them across hierarchical levels assuming 

that the system could exist in several states at a time. Systems Engineering [26] has 

stressed that any system is in exactly one state at a time, and we believe that software is 

not an exception. So, promoting the concept of several states at a time actually 

jeopardizes the fidelity of the model as well as widening the (already existing) gap 

between system engineers and software engineers. 

For these reasons, we propose to use the idea of modes and mode-classes, as introduced 

in the A-7E aircraft project [9, 10] to formulate an appropriate behavioral modeling 

framework. We use this framework to support structuring and elaboration of 

requirements specified in partial forms. 



2.2 Motivating Example 

Engineered Safety Feature Actuation System, ESFAS [27], is a popular example for 

illustrating the synthesis of behavioral models from partial specifications (cf. [1]). We 

use the ESFAS system (with slight modifications) as a running example to illustrate 

concepts presented in this report where necessary. 

The ESFAS component is a computer system, part of a power plant, intended to 

mitigate damage to the plant on occurrence of faults. ESFAS receives signals from 

different sensors
2
 and checks if the signal level has reached predetermined set-points, in 

which case ESFAS sends a safety notification to the SafetyHandler component which 

deals with the accident. The scenario in Figure 1 shows a sample interaction between 

ESFAS and other environment components. 

We identified the following system variables to define the ESFAS state at any point in 

time: 

� the pressure variable pr, is low or norm (i. e., normal value) or perm (i. e., 

permitted) where low<norm<perm; 

� the safety signal variable ss, is active , inactive;  

� the safety blocking push-button sb, is on or off; 

 

The ESFAS component has the following requirements: 

R1. ESFAS activates the safety signal (ss=active) when pr is low, and deactivates it 

(ss=inactive) when pr rises to norm level; 

R2. ESFAS must not activate the ss if the sb button is on. This enables a human 

Operator to block the safety so as to prevent unneeded activation during start-up 

(before ESFAS itself initializes) or cool-down phases. The Operator should reset 

the button back (sb=off), or otherwise the ESFAS reset it automatically after 

timeout duration since it has been set on. 

R3. The Operator can block the safety activation only when pr=low; 

R4. The Operator can not block the ss while it is already active. 

Fig. 1 shows a scenario for the plant. There are two behaviors that are mixed in this 

scenario: 

� the behaviors in R3 and R4 are modeled by the messages M6 and M9. 

� the behaviors in R1 and R2 are modeled by the messages M1, M2, M7 and M8. 

 

The ESFAS component is required to perform the following: 

                                                                 

2 We consider here only the Pressurizer sensor. Moreover, in the real ESFAS system, a signal is acquired by voting 

among 3 or 4 redundant sensors channels. This voting logic shown in [26] is omitted here for reasons of brevity. 



SafetyHandler Operator ESFAS Pressurizer

M1  sb=on

(low, on, inactive) (low, on, inactive)

M2  pr=low

(low, on, inactive)

(low, on, inactive)

M3  pr=norm

(norm, on, inactive)(norm, on, inactive)

M4  sb=off

(norm, off, inactive) (norm, off, inactive)

M5  pr=perm

(perm, off, inactive)(perm, off, inactive)

M6  sb=on

(perm, off, inactive) (perm, off, inactive)

M7  perm=lowM8   ss=active

(low, off, active)

(perm, off, inactive)

M9  sb=on

(perm, off, inactive)

 

Figure 1: Normal-startup scenario: the Operator blocks the safety signal 

activation while the system is starting up. 

 

Moreover, ESFAS has the following constraints: 

� The Operator can block the safety activation only when P=PERM; 

� The Operator cannot block the safety activation while it is already active. 

 These two behaviors are independent but the distinction between them is hidden in the 

scenario. This is particularly apparent when the scenario is transformed into state-

machines, where it would then be difficult to identify which state belongs to which 

context. The main reason for mixing those behaviors is the lack of systematic 

techniques to establish contexts in which the scenarios start and stop. In practice, 

designers insert some interactions before and after the core behavior they wish to show 

in a scenario, in an attempt to initialize a context for it. Moreover, some approaches 

assume that a scenario must start at the initial state [6], which is not necessary for every 

scenario. The main reason for that is the lack of systematic techniques to establish 

different contexts within which the scenarios are specified. 

In summary, the ESFAS example illustrates how the different contexts of the system 

can be mixed in the same scenario and this impedes elaboration and full coverage of 

requirements. The absence of a proper overarching framework to structure those 

contexts, and the scenarios executing within them, allows the specifications to be more 

partial and hides potential gaps in the state space. In the rest of this report, we present a 

novel framework to structure and organize these contexts and facilitate an improved 

synthesis of automata models from scenarios. 

3. MODAL BEHAVIOR: FOUNDATION 

To manage contextual information, we use the concept of mode as an abstraction of 

states to scope out a specific context. Several system modes are organized via a mode-

class. Informally, a mode-class is a collection of modes that completely partitions the 



possible system states set into disjoint subsets. Each mode defines a context in which 

certain behavior(s) can be specified. The same system can be seen as behaving across 

several mode-classes such that the system exists in exactly one mode from each mode-

class. More formally, this means that a system state must belong to exactly one mode 

from each mode-class. Every mode-class partitions the (same) system from a different 

dimension or viewpoint. This implies that, at any point in time, the system is in several 

modes (each from a specified mode-class) but it is in one-and-only-one state. 

Consider that the state-space of ESFAS is partitioned by the two mode-classes prMC  

and sbMC , where prMC  is composed of modes 
1
prM , 

2
prM , 

3
prM , while sbMC  is 

composed of modes 
1
sbM  and 

2
sbM . A graphical view of these mode-classes is shown 

in Figure 2, where a mode-class is depicted as a transition-system with an initial mode. 

Each mode in a mode-class is characterized by a predicate. For example: 

1
prM ⇒ (pr ≤ low), 

2
prM ⇒ (pr>low ∧  pr ≤ norm), 

3
prM ⇒ [pr ≥ perm]. Intuitively, a 

mode is the endurance of the system operation/execution over a set of states that have a 

common invariant (mathematically codified as a predicate). The separation of contexts 

allows us to reason about each with a manageable scope. The mode-class represents a 

skeleton that links partial specifications via cross-behavior transitions. 

In the following sections we first give an overview of the different uses of modes in 

software engineering, and then provide foundations for modal-behavior modeling that 

we use for behavior synthesis from scenarios. 

3.1 Modes in Software Engineering 

In the computing literature, there are two fundamentally different usages of the term 

‘mode’: Modal Logic [11] and Hybrid Systems [12]. The former is used by logicians to 

describe so-called necessity and possibility used for multi-valued interpretations of 

mathematical logic. This use of the term modes is not related to the work presented 

here. The latter usage of ‘mode’ is to characterize a set of related behaviors. For 

example, a hybrid system exhibits a set of different behaviors, each of which can be 

characterized concisely by a set of continuous differential equations. These behaviors 

 

Figure 2: ESFAS mode-classes: (a) Pressure prMC , (b) Safety Blocking sbMC . 
 

M1 M2 M
3

pr’ < perm

pr’ > low

pr’ < norm

pr’ > norm

pr pr pr

M1 M2

sb’ = sb

sb’ = sb

sb sb



are called system modes. The notion of mode that we use in this report is based on the 

ideas presented in [9] and has its origins in the theory of hybrid systems. 

Ptolemy [12] is a computing framework for modeling computerized hybrid systems. 

Maraninchi and Remond [28] used modes to extend the synchronous language LUSTER 

with a mode construct which is, essentially, a discrete version of the hybrid automata 

[29]. 

Other examples in the Software Architecture community includes the use of modes in 

AADL [30], an Architecture Description Language where a component behavior is 

mapped to a set of modes. Hirsch et al. [31] used modes to identify different structural 

configurations of software components in a software architecture model, and this line 

of work has been improved in [32] to enable self-management in service-oriented 

architectures.  

A few existing approaches attempted to formalize a mode-based specifications 

techniques. Modechart by Jahanian and Mok [33] is a specification language based on 

the RTL logic, however, it is not clear how they formulate the relation between a mode 

and a state. Paynter [34] described a viewpoint of relationship between states and 

modes, and identified four possible ways to adopt modes in describing system behavior. 

Although Paynter adopted the non-exclusive modes option to avoid the proving of 

invalid properties (see §2 in [34]), we believe that the idea of mode-classes [10] can 

avoid such problems and also promotes fundamental concepts such as separation of 

concerns. Moreover, having several mode-classes for the same system allows a state to 

belong to several modes (but each mode in a different mode-class) and achieving the 

same purpose of non-exclusion option adopted in [34]. 

3.2 Mode Abstraction 

In this section we propose a formal model of the mode and mode-class concepts, 

underpinning the system prototype we synthesize in the sense that we use mode and 

mode-classes notions to structure scenarios specifications and synthesize an integrated 

model.  A mode allows to specify a certain context within which one or more scenarios 

can be described and elaborated, and a mode-class completely partition the system 

space to a disjoint set of such contexts where scenarios can be specified exclusively 

within these contexts. Given a set of variables defining the state space of the system, a 

one or more mode-classes can be specified first to partition the state-space, and then 

scenarios are specified as described above. 

3.2.1 Mode vs. State 

An abstraction is one thing that represents several real things equally well [23]. We try 

here to establish a foundation of an abstraction of system behavior that can represent 

several possible state-based implementations. So, we begin by recalling the familiar 

concept of system state, or simply state, widely used in general Systems Engineering 

[26] and Model-Checking [35]. Simply speaking, a ‘state’ is a unique valuation of all 

system variables. With this definition, it is common also that a state is referred to as a 

detailed state or concrete state when compared to a more abstract representation. We 

use this definition of state here to establish a concrete level relative to which we then 

define the mode and mode-class abstractions. 

 



DEFINITION 1 (Concrete State). Let { }= 1 2 nV v , v , ... ,  v  be the set of 

variables defining the system context. Assume that the variables ∈iv V range 

over a finite set D, the domain of interpretation. The function :t V D→  

defines a set of possible concrete states t T∈  such that 

1 1 2 2 n nt v d , v d , ... ,  v d= 〈 ← ← ← 〉  and the variables valuations ←i iv d is an 

atomic proposition
3
. 

■ 

The selection of the variables set V is application-specific. We assume the level of 

concreteness is characterized by the atomic valuation of all variables vi in the form of 

vi=di. For example, the state it pr norm, ss inactive, sb off= 〈 ← ← ← 〉  is a concrete 

state in the ESFAS system because every variable is assigned a value in atomic form. 

Note that a variable vi may have identical value in several states, but the valuation of all 

variables, together, is unique across states. 

DEFINITION 2 (Mode). Let { }= 1 2 nV v , v , ... ,  v  be the set of variables 

defining the context of a system with S possible states. Let Q be a predicate 

over V and interpreted in D. The subset of states M ⊂ T is called a mode M 

that is characterized by the predicate Q  such that 

∃ t∈T, Q(t)⇒ t∈M 

■ 

That is, a mode M is a subset of possible system states that are satisfying some 

predicate Q. The predicate Q is said to be characterizing the states in M. This definition 

is related to the general notion of predicate abstraction [36] and we use it in the same 

sense as in [9]. 

As an example from the ESFAS system, the predicate Q⇒ ((pr>low ∧  

pr ≤ norm) ∧ (sb=off)) characterizes the mode M that contains all sates where pressure is 

normal and safety activation is not blocked, regardless of the valuations of other 

variables in these states. The state t pr perm, ss inactive, sb off= 〈 ← ← ← 〉 is a concrete 

state satisfying Q and belongs to M. 

There are two obvious means of abstracting detailed state information. One way is to 

omit a variable v from the predicate Q that characterizes M. In such case, Q asserts no 

information about v, and hence there could be as several possible states in M that have 

different possible valuations of v. Another mean of abstraction is to assign a range of 

values to a variable v appearing in the predicate Q. In this case, M will have as several 

possible states corresponding to different possible (atomic) valuations. It is needless to 

say that both cases can be applied to more than one variable. Using either of these cases 

is a designer choice. 

When a predicate Q is satisfied by only one state, the mode characterized by Q is said to 

be a singleton mode. 

 

REMARK 1 (Singleton Mode). A mode M characterized by a predicate Q is 

said to be Singleton Mode if 

!t T |Q(t)∃ ∈ . 

                                                                 

3 An atomic proposition is a formula with no deeper propositional structure. 



That is, M = {t}. 

■ 

 

This precisely differentiates between a state and a mode in our formulation of modes. 

More intuitively, a state must have complete context information, whereas that is not 

necessarily for a mode. 

3.2.2 Mode and Mode-Classes  

In order to structure a scenario, the designer will need to specify several contexts (or 

modes) that the scenario is supposed to exhibit such that each mode scopes a snippet of 

that scenario. These modes must be disjoint and (together) are covering the system 

state-space. Such a collection of modes is referred to as a mode-class. 

 

DEFINITION 3 (Mode-Class). Let { }= 1 2 nV v , v , ... ,  v  be the set of variables 

defining the context of a system with S possible states. A collection of 

modes = 〈 〉1 2 mMC M , M , ... ,  M , characterized by a corresponding list of 

predicates QMC = 〈 〉1 2 mQ , Q , ... ,  Q , is called a Mode-Class iff each state 

ti∈T is in exactly one mode Mi∈MC. That is, 

∀ t∈T, 
1=

⊕
j ...m

 Qj(t) 

■ 

 

A mode-class is a set of disjoint modes––scoping disjoint subsets of states––specified 

such that they cover the system state-space. In terms of scenarios structuring, on the one 

hand, disjointness of modes is useful because it minimizes redundancies in the 

scenario’s steps and facilitates maintenance of the scenario artifact. On the other hand, 

the space coverage helps with spotting other contexts not covered by the scenario––

allowing us to reason about what the scenario could do in these contexts and, 

accordingly, designers can adjust the scenario and/or the modes. 

Let us pause at this point and discuss an important synergy between mode-classes and 

scenarios (or partial specifications in general). Since the same system space is possibly 

partitionable in several different ways (using different collections of predicates), 

designers may specify as several mode-classes as they see fit. Each mode-class 

partitions the state-space into a different set of modes. On the other hand, scenarios are 

generally perceived as several (possibly disjoint or overlapping) descriptions of the 

same system. This suggests that mode-classes allow for defining a variety of contexts 

where adding a new mode-class exposes emerging contexts. This provides a fertile 

environment to uncover possible gaps within which scenarios can be specified. At the 

same time, mode-classes organize those contexts in classes that facilitate independent 

elaboration and maintenance of partial specifications. To this end, designers can 

initially specify a set of mode machines and then use them as guidance in identifying 

independent contexts and write scenarios that fit under the scope of modes in a mode-

class.. Moreover, as we will see shortly, mode-classes provide a disciplined way for 

merging a given set of scenarios, which is a major challenge arising in automated 

behavior synthesis from partial specifications [20]. 



Having defined the basic concepts of mode and mode-classes in previous sections, in 

the following discussions we use these concepts to define an (automata-based) abstract 

behavioral model that we will use as intermediate representation models in our 

synthesis process. 

3.2.3 Mode Machines 

At the mode’s level of abstraction, the system behavior description is a standard 

transitions system between the set of modes in a mode-class. We refer to this model as 

an Abstract Transition System or, more intuitively, a Mode-Machine
4
. 

DEFINITION 4 (Mode Machine MM). For a space T= V, D〈 〉 , a structure 

〈 〉0MCMM = V , Q , MC, M , , ε δ  is called Mode Machine, where: 

� V  is a finite set of system variables.  

� MC  is a mode-class partitioning the space T . 

� QMC is a collection of predicates characterizing modes in the mode-

class MC. 

� 0M is the initial mode which includes the initial system state. 

� ⊆ × ×MC ε MCδ is the transition relation. A transition �  from a
iM  to 

a
jM , denoted a a

jiM M→
� is itself a predicate relation :V V′→� where 

the primed variables denote the variables after the transition. 

■ 

 

The semantics of an MM is that of a standard transition system, with its nodes denoting 

modes instead of states. The initial mode 0M  is the mode that includes the initial state 

of the system. This can be understood directly from the definition of mode-class 

(Definition 3): since every state belongs to exactly one mode in the mode-class, then the 

initial-state of the system belongs to only one mode––the initial mode 0M . 

Note that the exact sets of possible system states, each belong to a mode in an MC, are 

yet to be decided. The only information available about those states is the assertion 

formulated by predicates in QMC. This also applies to the initial-state. Despite the fact 

that the initial-state has not yet been decided, the sub-space (scoped by 0M ) where this 

state belongs to is specified. 

Designers should also provide the transition relation δ  between different modes (in the 

same mode-class). Defining such a transition relation is a doable task at early stage of 

development, particularly because it is guided by the scenario to be described. Mode 

transition relation reflects the inter-context transitions, abstracting away from intra-

context transitions that will be extracted from the scenario part which is scoped by that 

context. 

3.2.4 Refinement of Mode-Machines 

The ultimate target for mode-machine refinement is to reach a state transition system. 

One challenge is to successively partition the machine’s modes in systematic manner, 

such that each mode is divided into lower-level sub-modes (or sub-spaces) of the state-

                                                                 

4 We opted for this naming convention to avoid confusion with Modal Transition System, MTS [37], which uses the 

term ‘modality’ in the sense of Modal Logic. 



space part scoped by that mode. Another challenge is to elaborate the machine’s 

transition-relation such as to connect submodes belonging to different higher-level 

modes. 

We address those two refinement challenges in the light of scenario structuring. In the 

following, the to-be-refined modes will be referred to as ‘higher-level modes’ or just 

‘modes’, whereas modes resulting from the refinement will be referred to as ‘sub-

modes’. 

3.2.4.1 Refining the state space 

Refining the system’s state-space requires each mode in the machine to undergo 

successive iterations of partitioning until we have all modes as singletons, while 

preserving disjointness and space-coverage constraints. Recall from REMARK 1 that A 

mode M is singleton if ! | ( )t T Q t∃ ∈  where Q characterizes M. Each mode is partitioned 

successively into a set of sub-modes, constituting lower-level mode-class local to that 

mode, in the same sense as we have partitioned the whole system state-space into the 

very first mode-class. 

 

LEMMA 1 (Mode Refinement). Consider a Mode-Machine 

〈 〉0MCMM = V , Q , MC, M , , ε δ . For every non-singleton mode Mk∈MC, 

characterized by predicate Qk∈QMC, there exists a mode-class MCk that 

partitions the space part scoped by Mk. MCk is referred to as refining Mk, 

denoted as Mk≺MCk. 

■ 

 

PROOF. From Definition 3, the space scoped by Mk is partitioned by MCk 

similar to the way the system space is partitioned by MC. 

 ■ 

 

This means that a partitionable (i.e., non-singleton) mode Mk∈MC can be refined to a 

local mode-class which is a set of disjoint sub-modes covering only the Mk’s space 

part. The union of this set of sub-modes plus the Mk’s peer modes in MC (excluding Mk 

itself) is also a system mode-class that refines MC. More formally,  

 

1{( ) ( \ )}= → ∈ ∪ ≺k
i n k kM MC MC M MC  

 

where k
iM  is the i-th sub-mode

5
 in the n-modes MCk. This is generalized in the 

following theorem. 

 

                                                                 

5 As a notation convention, we use superscript of an element to refer to the higher level item (set or collection) 

containing this element. We also use a subscript to an element to denote the position of this element in its 

containing item. For example, k
iM  denotes the i-th mode element in the MCk, and MCk mode-class corresponds to 

the is k-th mode l
kM  contained in some mode-class the MCl, and so on , until we reach the highest-level (root) set 

MC that has no parent (and no sub/superscript). 



THEOREM 1 (Mode-Class Refinement). Consider a Mode-Machine 

〈 〉0MCMM = V , Q , MC, M , , ε δ  with |MC|=m, m>1. Let Mj∈MC, 1≤ ≤j m , 

be the non-singleton modes in MC. The mode-class MC
R
 defined by the 

union 

( ){ } { { }}\∃ ≤ ∀ ≠= →= ∈ ∪∪
j

jR
 j m j s ji 1 n

MC M MC MC M  

is a refinement of MC, MC≺MC
R
, where: 

� n the number of non-singleton modes in MC,  

� MCj : Mj≺  MCj  are the (local) mode-classes refining the non-

singleton modes Mj in MC, 

� nj=|MCj| the number of modes in a mode-class and MC≺MC
R
, 

� Ms∈MC, for all s ≠ j, are the rest of modes in MC that are not 

partitioned in the refinement MC≺MC
R
 (for example, singleton 

modes in MC). 

■ 

PROOF. Direct from Lemma 1 and Theorem 1. 

■ 

 

Theorem 2 can be explained in the reverse way: a mode-class MC is said to be refined 

by another mode-class RMC  (denoted as MC≺MC
R
) if  

(1) there is one or more sets of modes MCj∈MC
R
 , where ≤j |MC| , such that each set 

partitions a corresponding mode Mj∈MC, and 

(2) {MC \ Mj} = {MC
R 

\ {MCj}}, which means that the set of modes in MC that are not 

refined by the MC≺MC
R
 relation are appearing identically in MC

R
. 

 

The relation MC≺MC
R
 is intended to be stepwise refinement relation where not all 

modes in MC are necessarily refined, but at least one is. It is important to note that the 

there may be arbitrarily large possible refinements of the same mode-class. This directly 

follows from the fact that there may be arbitrarily large numbers of mode-classes 

partitioning the same state-space. 

A successive refinement of a mode-class shall ultimately lead to a refined mode-class 

where all modes are singletons, each of which contains a unique state from S (the set of 

possible states). From refinement perspective, there can be several possible refinements, 

each of which results in a different set :T V D⊆℘ × , and each refinement reflects a 

design alternative. 

3.2.4.2 Elaborating the transition-relation 

While the ultimate objective from refining the state-space is to reach a possible set of 

system states, the aim of transition relation is to reach a level of detail where each 

possible transition connects two states. 

We may pause here to clarify what we mean by ‘possible’. A state-transition is an 

action which causes the system to move from its current state to a new state. Some of 

these transitions may not take place because of physical constraints in the runtime 

environment. Another category of those transitions, while not constrained by the 



runtime environment, but the system design may constrain them from taking place. So, 

we end up with a set of transitions that allowed by the runtime environment and are not 

constrained by the design (or requirements). Those transitions are the ones we term here 

as possible transitions. The same applies for the case of possible states. This argument 

is similar to the NAT and REQ mathematical relations in [38]. 

Mode-information is useful information at (1) design-time to help in a step-wise 

understanding and exploration of system behavior while keeping the whole system view 

and avoiding over-specification decisions. Also, analysis techniques applied to 

transitions systems such as model-checking and animations can be well applied to 

mode-machines because they have the same interpretation of standard automata. On the 

other hand, (2) it is useful at runtime too, for example, to help in identifying mode-

specific tasks that are common to all scoped states. In this report, however, we focus on 

the application of modes at design time where we use them in structuring the contextual 

information of scenarios, and we leave the other potential uses of modes as future work. 

 

Now we begin to formulate the step of mode transitions elaboration. This formulation 

will be used in our synthesis process at two milestones: (1) when constructing a number 

of mode-machines each of which corresponds to a mode-class along with its scoped 

scenarios, and (2) when merging these machines together in one integrated behavior 

model. In the sequel, the local mode-class that refines a mode qM  will be denoted as 

qMC , and the i-th mode in qMC  will be denoted as q
iM . 

DEFINITION 5 (Mode-Transition Elaboration) Consider 

〈 〉0MCMM = V , Q , MC, M , , ε δ  and two modes qM , rM MC∈  are refined 

such that ≺ q
qM MC  and ≺ r

rM MC . A transition q rM M→
� is elaborated 

to a set of transitions ( : ) ( )q qr r
ji  i,j M M MC MC→∀ ⊆ ×�  where 

q q
iM MC∈  and r r

jM MC∈ .  

■ 

3.3 Summary 

In this section we provided formal abstractions for the concepts of mode and mode-

classes [9, 10], and we defined an abstract form of a transition-system which we call a 

mode-machine. A mode-machine describes system behavior at some level of 

abstraction, and formally specified as a set of predicates, each predicate characterizing a 

mode, and a mode abstracts a disjoint subset of all possible system states. We also 

formulated a step-wise approach for refining a mode-machine to a more detailed mode-

machine and eventually to a concrete state-machine model where a state is represented 

as complete valuation of system variables. We separated the refinement relation into (1) 

space-refinement where modes (or state-space parts) are successively partitioned into 

sub-modes until we reach singleton modes––each includes one state only––and (2) 

transitions-refinement where a transition between two modes is replaced by a set of 

finer transitions between pairs of sub-modes (and eventually pairs of states) resulting 

from space-refinement of these two higher-level modes. 

This automata-based formulation establishes a basis for structuring scenario-based 

requirements specification by augmenting (or scoping) scenarios with contextual 



specifications in the form of mode-classes. In the next section we detail a behavior 

synthesis process, accepting structured-scenarios as input and producing as output a 

state-based system prototype amenable for further analysis and verification, using 

stepwise refinement of mode-based models as intermediate representations throughout 

the process flow. 

4. SYNTHESZING MODAL BEHAVIOR 

This section details a synthesis process to generate an integrated behavioral model, 

given a set of scenarios and mode-classes as input. The steps of the synthesis process 

follow the formal semantics of modes, mode-machines, and their refinement to final 

state-machine model (see Section 3). This ensures accuracy of generated prototype, thus 

providing validation of the process. Figure 4 shows a schematic diagram showing major 

phases of the process. 

4.1 Process input 

The synthesis process we propose is intended to be part of the software requirements 

specifications and analysis cycle. The process semi-automates the construction of 

automata-based system prototype, amenable to further analyses such as model checking 

[35].  

Input to the process consists of three related types of specifications:  

(1) A group of scenarios. The scenario format is assumed to be a Sequence Diagram 

SD––the simplest form of a scenario. Actions in an SD are annotated with (possibly 

incomplete) state information commonly known as pre/post conditions (cf. OCL 

[39]). We assume pre/post conditions annotations are in form of a vector <v1, v2 ,..., 

vn> which we refer to as the state vector, where vi are system variables. The special 

symbol ‘?’ is used in as the value of a variable vi to indicate that the value of this 

variable is unknown. 

An advantage of our approach is that we do not constrain the designer to specify 

complete state information. Sometimes a variable may be absent from pre/post state 

vectors, and in another case a variable may have a range of variables instead of 

atomic valuation. In either case, we assume designers have not decided yet about 

exact valuations of some variables. This is normal and typical situation at early 

stages of development.  

As we sill see shortly, incomplete state information protects the requirements from 

over-specifications resulting from early design decisions, and also facilitates the 

merging of machines independently generated from different SDs.  

(2) The second type of specifications is a group of mode-classes, MCs (see Section 3),  

that augment the SDs such that each mode-class scopes a subset of these SDs. 

Designers are expected to specify MCs for the purpose of providing contextual 

information for each SD. The relation between MCs and SDs inputs is clarified in 

the following two points: 
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Figure 3: Mode-based behavior synthesis process 

 

(a) Although it is correct to specify MCs such that every SD is scoped with 

several modes––one mode from each mode-class––we restrict input 



specifications such that an SD is scoped (as a whole) by one and only one 

mode from a MC. This means that every set of SDs are associated with an 

MC such that each SD is scoped by a mode in that MC. Of course an SD will 

be crossing the boundaries of modes in another MC. It is worth noting that a 

mode may not be associated with an SD, however every SD is associated 

with exactly one mode. 

(b) On the other hand, we do not see (so far) any motivation for defining several 

SDs in the same mode. If necessary, when a mode happens to be scoping 

several SDs, this mode may be broken down into as several sub-modes as 

the number of SDs. 

In summary (syntactically) we assume a one to one relation between SDs and 

modes, and (semantically) the set of SDs scoped by a mode-class are, together, a 

structured form of a longer scenario. 

(3) The last of type of input is a set of system constraints that assert undesirable system 

behaviors––those behaviors that must not be exhibited by the system under 

prototyping. Our process exploits these constraints to help in decisions about 

potential transitions between modes. 

The rest of this section details the individual phases of the synthesis process along with 

associated algorithms accompanied by their complexity analysis. 

4.2 Phase 1: Preparing Input Specifications 

This phase performs consistency checks on two aspects: 

� Checking legitimacy conditions of a mode-class (see Definition 3). 

� Checking consistency of each scenario with its mode. 

� Connecting the modes in the same mode-class with general transitions. 

(1) Mode-class legitimacy. Conditions for mode-class legitimacy were already 

expressed (on an arbitrary example) by Parnas as “Domain Coverage Theorem” and 

“Disjoint Domain Theorem” [40]. A demonstration of automatic check of these 

theorems has been done using PVS [41]. In our ongoing tool support work, we are 

integrating PVS in similar way to [42], where a tool for an automatic check of Tabular 

notations is integrated with PVS. 

(2) Scenario and mode consistency is checked by examining the mode’s predicate 

against the state-vector valuations (i.e., the pre/post conditions) at every action in the 

scenario’s SD. The SD is consistent with its mode if no variable valuation at any 

pre/post condition is contradicting with the mode’s predicate.  Listing 2 shows a 

procedure for this step. 

 

Algorithm SD_Mode_Consistency(V, SD) 

Input:  

(a)  V is a list of n system variables v. 

(b) Scenario SD=<ACT,QSD> where:  

Actj∈ACT, j≤|ACT|=m, is the set of actions in SD. 

Actj=<Prej,Lj,Postj> is an action in SD where: Prej and 

Postj are predicates formed as conjunction of 



valuations of one or more variables v. Lj is string 

label of Actj. 

 QSD predicate of the mode scoping SD. 

 

Note: as notational convention, for any predicate Q we use 

Q(v) to denote the valuation of v as specified in Q. if a 

variable is not specified in Q, then Q(v)=undef. 

Procedure: 

1 FOR j=1 to m 

2  FOR i=1 to n  

3   IF (QSD(vi) = {∅} OR Prej(vi) = undef) THEN NEXT j; 

4    IF Prej(vi)∈ PSCN(vi) ELSE RETURN 0 
5 RETURN 1 

   

Listing 1: Checking scenario consistency with its mode 

 

The basic idea of that procedure in Listing 1 is as follow: For each SD involving a set of 

m actions ACT and scoped by a predicate QSD, if a variable vi is valuated in QSD with 

some range, then any valuation of vi in any of the SD’s pre/post conditions must be 

within that range of vi specified in QSD. 

In this sense, QSD plays the role of invariant for all of the pre/post conditions in the SD. 

Ideally, but not necessarily, variables involved in a mode’s predicate will be 

independent from the pre/post conditions. In our experience, it is better to specify a 

mode-class (the SD’s scoping predicate) with respect to variables which are different 

from other variables used in specifications of sub-modes (SD’s pre/post conditions). 

This allows us to model system behavior by varying the sub-modes’ variables, while 

holding other (scoping) variables as invariants. The key point is to decide which 

variables to use in either case, and this is an application-specific decision. 

(3) Connecting higher-level modes with abstract transitions. In this step, we connect 

the higher-level modes in the same mode-class with general transitions such that: for 

two modes M1 and M2, characterized by predicates Q1 and Q2, respectively, a transition 

from M1 to M2 is added and labeled by Q2. Similarly, another transition from M2 to M1 

is added and labeled with Q1. Due to disjointness of modes, the predicate of destination 

mode represents the variables’ valuations change that triggers any transition to it. 

 

Complexity Analysis. For step (2), the algorithm in Listing 1 runs in a polynomial 

order O(|V|*|ACT|), a where |ACT| is the number of actions in the SD and |V| is the 

number of system variables. While a scenario may have a relatively long list of actions, 

the number of variables is typically much smaller and so the complexity reduces to a 

O(|ACT| log |ACT|). Step (3) is expected to run in constant time, compared to step (2), 

because it iterates over modes in every mode-class, with each mode correspond to an 

SD, and the total number SDs is negligible compared to the total number of actions in 

those SDs. The time effort of the first step is dependent on the response time of the 

theorem prover which also expected to be small as the number of system variables are 

kept manageable. 

 



4.3 Phase 2: Constructing mode machines 

The input to this phase is the same as input to Phase 1, with specifications’ 

inconsistencies are resolved. In this phase, we translate an MC, combined with the SDs 

it scopes, to a mode-machine. This is applied for every MC in input specifications, 

resulting in a set of independent mode-machines to be merged in Phase 3. 

A machine constructed in this phase has two-level hierarchy of modes and sub-modes. 

A higher-level mode-machine consists of those modes belonging to the input MC––

each mode scopes an SD. In each of these modes, there is a set of sub-modes––

constituting a lower-level mode-machine––corresponding to pre/post conditions’ 

predicates specified in the SD scoped by that mode. For brevity, we will refer to this 

lower-level machine as the submode-machine, and we will refer to the higher-level 

machine as just a mode-machine. 

For every mode-class MC, and the SDs it scopes, we construct one mode-machine with 

each of its modes containing one submode-machine. To do this, Phase 2 performs the 

following steps: 

(1) For every mode in MC, we compile the corresponding SD to a submode-machine. 

(2) Modes in MC are then connected together to construct the higher-level mode-

machine as follows: for every two modes M1, M2∈MC, characterized by predicates 

Q1 and Q2 respectively, we add a transition ( )→1 2M MT  labeled by the predicate 

⌐Q1 ∧ Q2. A symmetric transition from ( )→2 1M MT labeled with ⌐Q2 ∧ Q1 is also 

added. Predicates ⌐Q1 ∧ Q2 and ⌐Q2 ∧ Q1 are corresponding to syntactic constraints 

(see Theorem 4) on transitions between modes M1, M2.  The initial mode is assumed 

to be indicated by designer in the definition of mode-class, which is manageable 

because typically the number of modes in a mode-class is small. This is compared 

to other related approaches where designers have to specify an initial state, which is 

more difficult to do at early stage of development. Our approach relieves designers 

from this early decision by instead specifying a state-space part (i.e. mode) where 

the initial state is expected to lie. 

(3) The final step in Phase 2 is to find possible transitions between sub-modes 

belonging to different modes in MC. The possible transitions must satisfy the 

syntactic-constraints transitions made in the previous step, or otherwise they are not 

added to the machine. 

(1) Compiling scenarios to (sub) mode-machines. Translating an SD to a mode-based 

model (instead of state-based) relieves designers from making early decisions about 

complete state-information at the SD’s pre/post conditions––allowing an incremental 

exploration of (and building knowledge about) system behavior. On the other hand, it 

provides an opportunity for possible interleaving between final states in the final states-

machine model (see Phase 3). As an example, the ESFAS mode-classes  prMC  and 
sbMC  are shown visually in Figure 4. 

In this step, every SD is translated to a submode-machine 

Listing 2 shows a procedure to perform this step. 

 

Algorithm CompileSD(V, SD, MM) 

Input: 



(a)  V is a list of n system variables vi. 

(b) SD=<ACT,Q> is a sequence diagram where:  

ACT is the list of actions in SD (ordered by 

precedence in SD’s flow). 

∀Actj∈ACT, j≤|ACT|=m, Actj=<Pre,L,Post>: 
Pre and Post are two predicates corresponding to pre 

and post conditions, respectively, that are 

associated with Actj. The Pre and Post predicates are 

formed as. Lj is string label of Actj. 

 Q predicate of the mode scoping SD.  

(c) MM=<Q,MC,T> is a mode-machine data structure to store 

the compiled machine, where: 

Q is a predicate scoping MM, MC is a list of modes 

constituting MM’s mode-class, and T is a list of 

transitions between modes in MC. For all Tr∈T, 
Tr=<Ms,Q,Md> connects Ms (src) and Md (dest.) modes, 

such that <Ms,Md>∈MC×MC, and Q is the event-predicate 
triggering Tr. 

 

NOTES: 

Any predicate Q is represented as a conjunction of 

valuations of one or more variables vi∈V, where Q(i) 
denotes the valuation of vi as specified in Q. When vi 

is not specified in Q then Q(vi)=undef. 

 

Procedure: 

1  k=1; 

2  MM.Q = SD.Q; 

3  FOR j=1 to m 

4   MM.MC(k).Q   = SD.Act(j).Pre; 

    MM.MC(k+1).Q = SD.Act(j).Post; 

5   linkModes(MM.MC(k), MM.MC(k+1)); 

6   k++; 

7  NEXT j; 

    

8  WHILE k≥1 
9   j=1; 

10  WHILE j<k 

11   FOR i=1 to n 

12    IF MM.MC(j).Q(i) ≠ MM.MC(k).Q(i) 

13    THEN NEXT i; 

14    IF i=n THEN 

mergeIdnenticalModes(MM.MC(j), MM.MC(k)); 

15   NEXT i; 

16  NEXT k; 

17 NEXT j; 

 

Listing 2: Translating a scenario to a mode-machine 

 

The procedure in Listing 2 does the following majors tasks:  



• Steps 1-7 store pre/post conditions as modes into the MSD mode-machine and 

add a transition––corresponding to the difference between pre and post 

conditions––between these modes using the function linkModes(). 

Essentially, this builds the initial mode-machine which is a sub-machine to the 

mode scoping SD. 

• Steps 7-17 searches this mode-machine for identical modes and merge them 

together. Two modes are identical if they are characterized by identical 

predicates. The function mergeIdenticalModes() merges two identical 

modes in one mode that has the union of the two modes’ incoming and outgoing 

transitions. 

 

As an example, Figure 4 shows the refined mode-machine corresponding to mode-class  
prMC in the ESFAS system. The lower-level machines correspond to SDs scoped by 

the mode-classes. For space reasons, we have omitted these SDs, but they still can be 

straightforward understood from the figure. Nodes in those machines are (sub) modes 

corresponding to pre/post conditions in the compiled SDs. The higher-level machines 

are corresponding to prMC  and sbMC classes. 

Note that in MC
A
, transitions between modes that appear in Figure 2 are refined into 

transitions between lower-level sub-modes. The next step in this phase will explain how 

those transitions are refined. 

A final noteworthy point about the machine in Figure 5: according to Theorem 2 

(Section 3) a sub-machine of a certain mode must be a refinement of this mode. 

However, it is not the case with the sub-machines in Figure 5 because an SD’s pre/post 

conditions are not necessarily expressed by the designer to completely covering the 
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space part scoping this SD. This semantic problem will be resolved in Phase 3 where all 

(high-level) mode-machines are merged together such as they partition each other, 

resulting in one integrated mode which is a common refinement of any of the machines. 

(2) Refining transitions. In this step, we refine transitions between the scoping modes–

–the higher-level modes that scope SDs. In terms of scenarios specifications, these 

transitions are connecting different scenarios that are scoped by different modes in the 

same mode-class. Abstraction as the key for invariant verification 

For two modes M1 and M2, characterized by predicates Q1 and Q2, refining the 

transition  1 2M M→
� is the process of finding all possible (but legal) transitions from 

sub-modes in M1 and those sub-modes in M2 For example, in Figure 2, the transitions 

between higher-level modes in MC
A
 machine are replaced by transitions between 

submachines of these modes. Figure 5 shows the refinement of transitions between 

modes 
1
prM , 

2
prM  (refinements of other transitions are not showen for space reasons). 

The procedure in Listing 3 performs this refinement step. 

 

Algorithm RefineTransitins(MM) 

Input: 

(a) MM=<QMM,MC,T> is a mode-machine where: 

QMM is a predicate scoping MM, MC is a list of modes 

constituting the machine’s mode-class, and T is a list 

of transitions between modes in MC. For all Tr∈T, 
Tr=<Ms,Q,Md> connects Ms (src) and Md (dest.) modes, 

such that <Ms,Md>∈MC×MC, and Q is the event-predicate 
triggering Tr. 

(b) System constraints C 

(c) TTEMP is temporary list of transitions 

 

Note:  

(1) The predicate QMM scopes the whole system because M a 
system-level machine. So QMM is not meaningful and used 

here only for notational reasons. 

 

Procedure: 

1  WHILE s=1 to m 

2   WHILE d=s to m 

3    TTEMP = detectPossibleTransitions(Ms, Md); 

4     FOR i=1 to sizeof(TTEMP) 

5      IF Satisfied (TTEMP(i).Q, Md.Qj) 

6       IF Satisfied (TTEMP(i), C) 

7        IF designerAccepts(TTEMP(k)) 

8        THEN addTransition(TTEMP(k), Ms, Md); 

9   Next d; 

10 Next s; 

 

Listing 3 Refining transitions between higher-level modes. 

 



The function detectPossibleTransitions() checks for differences (in 

variables’ valuations) between the predicates scoping Ms and Md. If a variable appears 

in both predicates with different values, then there is a potential transition between Ms 

and Md. Detected transitions are then put under three complementary tests: 

(a) A transition is allowed only if it is valid (Theorem 4). That is, a transitions is 

allowed if it satisfies Qd which is the predicate characterizing the destination (sub) 

mode. In general, a transition from (or to) a mode must be valid for all sub-modes 

of this mode. This is the case with syntactic transitions we added in Phase 1 step 3. 

However, designers may (manually) specify a transition that thought be valid, but it 

is not. For example, in the mode-class MC
B
 Figure 2, the transition “Block 

timeout” is manually-specified transition, and it must be checked against the 

source and destination modes’ predicates. In short, this step is intended to check the 

validity (according to Theorem 4) of manually-specified transitions. 

(b) A transition is allowed only if it satisfies the (user-defined) system properties or 

constraints C (part of the inputs to the synthesis process). 

(c) If a transition passed the two checks above, then it must be finally checked by a 

designer to see if it is realistic or not. It is important to understand the system’s 

actual behavior so as to avoid over- or under-specifications. As an example of this 

type of transitions, consider the red-colored transition pr=norm in Figure 5 between 

the states <pr=low,ss=inactive,sb=off> and <pr=norm,ss=?,sb=on>. This 

transition is syntactically correct and also it does not violate any of the ESFAS 

constraints given in Section 2.2. However, the designer can easily detect that this 

transition is not safe because it allows the ESFAS system to automatically block the 

safety activation (sb=on) which is very unsafe to leave such critical action to be 

automatically decided by ESFAS. The designer then would disapprove such a 

transition to be added to the system behavior model, and may also add it to the set 

of system constraints C. 

 

Despite the fact that an event is syntactically correct (and does not violate system 

constraints) it may be an over-specifications because such an event stet leads 

verification tools to incorrectly indicate false errors that do not happen at runtime [35]. 

The same situation occurs with under-specifications, where an event could happen at 

runtime but has not been specified in the model.  

It is important to note that the transitions to be derived manually are user-friendly 

because they are still at the level of modes, not states. Moreover, a proper tool support 

can help the designer to stop this transition-detection process at some given level of 

detail. 

These constraints are expected to reduce the number of manually-resolved transitions to 

a manageable list to be resolved (semantically) by the designer. 

Complexity Analysis. This phase takes the largest effort in the whole process. For step 

(1), the algorithm in Listing 2 has a complexity of O(|ACT|
2
) calculated as follows: 

- steps 1-7 has a |ACT| number of iterations. The function linkModes() takes 

constant time because it adds just one transition corresponding to the difference in 

variables’ valuations in the two modes. 



- steps 7-17 has a (k*j)/2 number of iteration, but since k=2*|ACT| (two modes per 

action) then the number of iterations are |ACT|
2
. The function 

mergeIdenticalModes() takes constant time because each of the two modes 

has exactly two transitions (due to the sequential nature of a scenario). 

For step (2), algorithm in Listing 3 makes a heavy use of theorem prover to check 

satisfiability of system constraints. Moreover, the algorithm involves designer’s 

decisions. Assuming all external effort is constant, the algorithm executes in 

O(|V|*|ACT|
2
) where detectPossibleTransitions() involves |V| iterations. 

So, Phase 2 runs in is a polynomial time of O(|ACT| + |ACT|
2
 + |V|*|ACT|

2
) that 

reduces to O(|V|*|ACT|
2
) and further to O(|ACT|

2
 * log|ACT|) if |V| is kept much less 

than |ACT|. 

4.4 Phase 3: Merging and refining mode-machines. 

While the first two phases are concerned with refining each mode-machine 

independently, this phase merge those refined machine together in one integrated 

model. This is done in by (1) pair-wise merging of refined machines into one integrated 

mode-machine, and (2) then a state-information refinement is done on all modes in this 

integrated model so that each mode is refined to a singleton by adding the missing state-

information. The second step is a yet more chance for designers to explore the state-

space and add possible states as we will see shortly. 

The two steps are summarized as follows:  

(1) Merging a pair of mode-machines AM and BM involves two sub-steps: (a) 

determining the intersection between modes in every modes pair 

< A
iM , >B

jM ∈ AM × BM , and (b) adjusting the related transitions in AM  and BM  

to accommodate the resulting intersection-modes. This is repeated for every two 

machines until we reach to one integrated system model. 

(2) Each mode in resultant system model is then refined by adding state-information so 

that each mode becomes a singleton mode––a mode containing one only one state 

(see Remark 1). A mode reduces to a state if the mode’s predicate is equivalent to a 

complete variables’ valuation. 

 

(1) Merging a pair of mode-machines. The merge process is motivated by a 

fundamental principle of mode-classes: they are behavioral-classifications of the same 

system and specified from different dimensions. This means that a mode A
iM ∈ AM  

must overlap with at least one mode B
jM ∈ BM , and it possibly overlaps with as several 

as all modes in BM . It is straightforward to note that in case A
iM  overlaps with only 

one mode from B
jM , then this implies that A

iM ⊆ B
jM . This remark helps to optimize 

the procedure performing this step, shown in Listing 5. The procedure has two 

components, explained as follows:  

for every pair of machines AM  and BM such that = → ∈A
i 1 nM AM  and = → ∈B

j 1 mM BM : 

(a) First, identifying possible overlap between every modes pair < A
iM , >B

jM . If 
A

iM overlaps with B
jM  then we modify A

iM  to be A
iM \{ }∩A B

i jM M . Similarly we 

modify B
jM to be B

jM \{ }∩B A
j iM M , and finally we create a new mode { }∩A B

i jM M  



that scopes their intersection. Sub-modes of A
iM  and B

jM  that are lying in the 

overlap space are assigned to the newly created mode. Moreover, the new mode is 

updated by those existing transitions connected to the overlap sub-modes and are 

crossing the boundaries of the new mode. 

(b) Second, detecting and resolving possible transitions between overlapping modes. In 

terms of scenarios, an overlap two between two modes A
iM  and B

jM  indicates that 

the two scenarios scoped by A
iM  and B

jM  have potential for transitions’ 

connections between their sub-modes (or states in the final model). For example, 

one scenario may be starting after the other, or even the execution may be jumping 

between states in these scenarios. This avails a further opportunity for enriching 

system behavior. 

Algorithm mergeMachines( AM , BM ) 

(a) Two mode-classes MA (light) and MB (dark), each
has two higher-level modes (the outer rectangles). In
each mode-class, a higher-level mode contains a
lower-level mode-machine with only two modes. The

lower-level modes in MA are numbered to help
illustrating the merge process The lower-level
mode-machines in each higher-level mode are
connected by transitions refined in Step 3 of Phase 2.

(b) Mode M1
A is overlapping  with both modes in MB

(c) Mode M1
A is merged with both modes in MB

(d) Mode M2
A is overlapping with the rest of MB

(e) Mode M2
A  merged with rest of MB

2

4

1

3

(a)

(b)

2

4

1

3

2

4
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3
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1
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Figure 5: Illustration of mode-classes merging process 

 



Input: 

(a) Machines =< , , >A A A AM Q MC T   and =< , , >B B B BM Q MC T  where → ∈i=1

A

nM AM  

and → ∈j=1

B

mM BM . 

(b) System constraints C 

(c) TEMPT is temporary list of transitions 

(d) TEMPM :temporary mode data structure to hold overlap 

space and its submodes 

Procedure: 

1 WHILE i=1 to n 

2   WHILE j=1 to m 

3    TEMPM  = determineOverlapSpace( A

iM , B

jM ); 

4    IF TEMPM  ≠ {∅} 

5    THEN TEMPT  = detectPossibleTransitions( TEMPM  , A

iM ); 

          connectMachines( TEMPM  , A

iM ); 

          TEMPT  = detectPossibleTransitions( TEMPM  , B

iM ); 

          connectMachines( TEMPM  , B

iM ); 

6  Next j 

7 Next I; 

 

Listing 4: Merging mode-machines A
iM  and B

jM  

 

Figure 5 shows a general case example of merging two machines AM  and BM , where 

each machine consists of two modes. (For brevity, potential transitions between newly 

created modes are not shown in Figure 5). 

(2) Final modes-to-states refinement. In this step, the single integrated mode-based 

system model built so far is refined to a state-based model. This is done by iterating 

over all modes in this model and completing the missing state-information so that every 

mode reduces to one state––a singleton mode. The missing state-information in a mode 

is either a missing variable (does not appear in the mode’s predicate) or a variable 

defined with a range of values. In the former case, the missing variable is presented to 

designer to make a decision regarding its value. In the latter case, the designer must 

decide either to consider the value-range as one atomic value, or alternatively to create 

several states in the mode so as to accommodate the variation of this variable within the 

specified range. In either case, considering the variable’s valuation in neighboring 

modes (or states) is helpful. Once every mode is resolved to state(s), the machine model 

will have complete state information. It is important to note that mode-hierarchy 

information (i.e. modes’ predicates and modes-sub-modes relations) are retained in the 

model for design-time analysis. At runtime, however, this information is (formally) 

redundant such that the system exists in one and only one state at a time––this 

distinguishes our model from hierarchical state-machines formalisms. However, it is 

possible for an implementation to make use of mode-information for optimization 

purposes (e.g. performing a task which is common to all states in a mode, instead of 

repeating it each time a state in this mode is entered). 

Complexity Analysis. Algorithm in Listing 4 has a complexity effort of 

O(3*|V|*|SDs|
2
) where |SDs| is average number of scenarios per mode-class input to 



the process (see process inputs Section 4.1) and each of the functions 

determineOverlapSpace()and detectPossibleTransitions() 

involves |V| iterations. This complexity is acceptable because the number of scenarios 

in a mode-class is equal to the number of modes in this mode-class (see section 4.1). 

 

4.5 Summary 

We have described in this section a synthesis process that takes as input a collection of 

scenarios snippets organized under the scope of a corresponding collection of mode-

classes. The intermediate models of the process are maintained as mode-machines until 

the last step. As we showed in the individual phases, this helped to reduce the effort and 

complexity that would be required by the process procedures if we moved directly to 

state-models from the outset. The process involves some interactions with the designer, 

particularly when connecting modes together and when creating new modes in the 

merge process. 

 

 

5. DISCUSSION AND RELATED WORK 

A wide range of techniques have been proposed to automate the construction of 

behavioral models out of partial specifications in general and scenario-based 

specifications in particular. 

To the best of our knowledge, no prior approach addresses the structuring of contexts in 

partial specifications in terms of providing coverage of behavior space and prevents 

inter-contexts traversing. However, on the other hand, the extraction of contextual 

information from a given specification is often done [43],[44]. In the following 

discussion, we discuss these approaches, and the others related ones, with respect to 

each issue of behavior synthesis. 

On partiality. A common direction for addressing partiality is to enrich the machines, 

independently-generated from scenarios, with possible behaviors and delay refinement 

decisions at the merging phase. Uchitel et al. [45] (and improved in [20]) use special 

logic to capture the possible behaviors. Krka et al. use the same technique but to 

generate component-level models. Another range of techniques (c.f. [23-25]) infer 

behaviors from the given specifications. A common denominator of these approaches is 

the use of bare scenarios without a structuring framework. This distracts the synthesis 

process from generating correct and structured models to issues related to partiality 

itself. We consider partiality as symptom of the main problem of a lack of a framework 

within which the partial specifications are described. We assume simple form of 

scenarios as input; however we augment it with mode specifications to provide 

structuring and scoping of each scenario. 

Other proposals accept more expressive forms of scenario than an SD as input. Uchitel 

et al. [19] synthesize behavioral models from Message Sequence Charts [5] to detect 

implied scenarios. Whittle and Jayaraman [46] use the recent Interactions Overview 

Diagrams IOD in UML 2.0 [4] to generate Statechart-based designs. Though specified 

at a higher-level, these forms of scenarios specification express control-flow 

information between lower-level scenarios— a yet more operational view of the system 

with some control information similar to that of flow-charts. The higher-level feature in 

such specifications does not address coverage or integration between the lower-level 



scenarios. Our approach is distinct from these proposals by structuring the 

specifications in the state-space rather than a flowcharting structure. 

On abstraction. This direction of work augments the partial specifications with 

auxiliary specifications in some form of abstraction to help overcome complexities in 

the synthesis process. Sun and Dong [43] combine Live Sequence Charts, LSC, with Z 

specifications. They use predicate abstraction techniques to find predicates in LSCs. 

Although they extract abstract state-information similar to modes in our approach, the 

extracted information does not guarantee scoping (coverage) of state-space as we do by 

mode-classes. Also the mode-classes help designers to structure the specifications, and 

provide feedback about the underspecified aspects of scenarios, hence helping for 

earlier elicitation of more requirements. Another recent work of de Caso et al. [44] 

automatically constructs useful FSM-like abstractions from specifications based on 

pre/post conditions. Although the extracted abstraction is promising for its intended 

validation purposes, it  is similar to [43] in the sense that it is extracted from a given 

specification and does not guarantee space-coverage as we do with  mode-based 

specification. 

We use modes as user-defined specifications rather than extractions from scenarios. We 

have provided a formal basis for specifying modes and partitioning the system state-

space from different dimensions, based on the idea in [10], and sticking to standard 

mathematical concepts without using any unfamiliar formal philosophies– thus 

allowing the model to be applied to a wider range of applications. In this sense modes 

can be applied to other partial specifications such as goals and properties. In the general 

sense, we envision mode-based design to be used as a design methodology similar to 

Statecharts, but avoiding the mix between higher-level state and mode. 

On Synthesis Process and tooling. Our proposed process is quite interactive with the 

designer. The level of designer involvement depends to a great extent on the availability 

of system constraints (such as safety properties) to cut down the possible transitions. 

Agreeing with others (cf. [7]), we consider this to be a positive thing as it contributes to 

designer’s experience with the system. The feedback to the designer helps to flesh-out 

the system details as early as possible, and yet presents the information in abstract form 

(modes) without overwhelming details. 

Several of the related approaches assume designer’s involvement at some stage in the 

synthesis process. Krka et al. [8] assume nondeterministic transitions appearing in 

Phase 2 of their synthesis process. In Mäkinen and Systä [47], their MAS  tool 

generates component-level behavior. Based on grammatical inference, MAS asks the 

designer trace questions in order to avoid undesirable generalizations. (A trace question 

is a path in the state machine local to a specific agent). MAS focuses on single agents; 

generalization must therefore be done independently for each software agent. Trace 

questions may be quite hard for designers to understand as they do not show global 

system behaviors. The same applies in Damas et al. [48], where the designer is 

presented with scenario questions to classify it as positive or negative. A related 

assumption about designer-involvement is also made in other inductive-learning 

approaches such as [49]. 

when involving the designer, the key point in our opinion is not to present the designer 

with too detailed information to comprehend. In our approach, we present mode-level 

information to the designer, and the designer still has the option to delve into more 

details when needed. 



On the other hand, generating and manipulating mode-machines throughout the 

synthesis process (instead of state-machine as in almost all related proposals) avoids a 

possible explosion of states. The disjointness of modes in the same mode-class helps to 

avoid non-deterministic transitions between lower-level modes when merging mode-

machines. Finally, partitioning the state-space allow designers to relax the assumption 

that a scenario must start at an initial state so that they can describe scenarios that start 

at any state within its scoping mode.  

6. CONCLUSIONS 

We propose a framework to support rapid prototyping of system behavioral model from 

partial specifications, in the form of sequence diagrams, and mode-based specifications. 

We use the classic idea of modes and mode-classes to structure the partial specifications 

so as to provide adequate coverage of system requirements at early stages of 

development. Modes abstraction is a powerful concept for scoping and decomposing 

system behavior. The flexibility provided by mode-classes for partitioning the behavior 

from different viewpoints (or dimensions) allows designers to, intuitively, define 

contexts and specify detailed behaviors within those contexts, in a stepwise refinement 

process. These behaviors may be, for example, precise functions [27], goals [1] or 

scenarios, as the case in this report. 

We complemented this framework with a (semi) automated synthesis process to 

generate behavior models of sequence charts that are structured and scoped by mode-

classes. The resulting models are standard automata-based and are amenable to further 

reasoning using off-the-shelf model-checkers or simulation/testing tools. The proposed 

framework supports designers by giving feedback about unforeseen aspects––situations 

or contexts not covered by the existing scenarios––that can be used to elaborate those 

requirements and discover new requirements early in the development process. 

Future developments of our approach include (1) implementing a tool for the synthesis 

process. (2) Integrating an off-the-shelf theorem prover to support complex predicate 

specifications so as to relax the assumption we made in Section 4.1, (3) Evaluate the 

approach on a real world system to evaluate its effectiveness as a design methodology 

and to evaluate the time complexity of prospective tool. 
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