

Software Behavior Synthesis

Hesham Shokry

Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland

Mike Hinchey

Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland

26th April 2010

Contact

Address Lero
International Science Centre
University of Limerick
Ireland

Phone +353 61 233799
Fax +353 61 213036
E-Mail info@lero.ie
Website http://www.lero.ie/

Copyright 2010 Lero, University of Limerick

This work is partially supported by Science Foundation Ireland
under grant no. 03/CE2/I303-1

Lero Technical Report Lero-TR-SPL-2008-01Lero Technical Report Lero-TR-2010-01

Software Behavior Synthesis (Draft)

Hesham Hesham Hesham Hesham ShokryShokryShokryShokry

Mike Mike Mike Mike HincheyHincheyHincheyHinchey

Lero – The Irish Software Engineering Research Centre

University of Limerick, Ireland

26262626 April April April April 2010201020102010

[Version 1.0][Version 1.0][Version 1.0][Version 1.0]

Copyright 2010 Lero, University of Limerick.

This work is partially supported by Science Foundation Ireland

under grant no. 03/CE2/I303-1.

 Lero Technical Report Lero-TR-2010-01

ABSTRACT

Early system requirements are often captured by declarative and property-

based artifacts, such as scenarios and goals. While such artifacts are intuitive

and useful, they are partial and typically lack an overarching structure to

allow systematic elaboration of the partial behaviors they denote. We

propose a structuring approach appropriate for scoping different partial

behaviors, focusing on scenario-based behavior specifications. The approach

is based on Parnas’ notions of ‘modes’ and ‘mode-classes’, where a mode is

a set of states that satisfy some predicate, and a mode-class is a collection of

disjoint modes that partitions the system’s state-space so that each state

belongs to exactly one mode. There may be several mode-classes, in which

case every state belongs to exactly one mode from each mode-class. We

structure a scenario by partitioning its observed states into modes, allowing

elaboration of the scenario’s parts independently without losing the overall

system view. Having every scenario partitioned via a suitable mode-class, we

merge the mode-classes constructively to build a single behavioral model of

the system. We argue that our approach facilitates early refinement and an

improved coverage of requirements, as well as improved generation of

system models from partial behaviors. We provide a sound formal model of

modes, based on which we detail a novel technique to synthesize a prototype

of system behavior, given a set of scenarios and corresponding mode-classes

specifications as input.

Keywords

Mode-based design, Behavioral-models synthesis, State-space partitioning.

1. INTRODUCTION

At early stage of development, designers often have little or vague information

regarding requirements and the given information is subject to frequent changes. This

can result in too much iteration between design and requirements specification

activities. A general solution for overcoming these problems is prototyping system

behavior to be used for early reasoning and elaboration. However, vagueness about

behavior space and varieties of sources of requirements results in specifications that are

unstructured and partial. Partial specifications are commonly captured via intuitive

artifacts such as goals [1],[2] and properties [3], also known as declarative

specifications. Another type of partial specification, of particular interest to this report,

is scenario-based specifications [4, 5].

The problem with partial specifications is that designers will be unable to (1) ensure

space-coverage of prospective system behavior, nor (2) reason about system-level

properties that cross boundaries of the individual specifications fragments (such as

scenarios). Both issues require a system model that spans the behavior space and that

can successfully glue the isolated behaviors together into one integrated behavioral

model.

Several approaches, however, have attempted a (semi-) automatic synthesis of system-

level (e.g. [6]) and component-level models (e.g. [7, 8]) from partial specifications. A

common characteristic of these approaches is that they address the symptom of the

problem: partiality, instead of its cause: the lack of a proper overarching structure of the

system behavior. More specifically, most approaches rely on unstructured scenarios

specifications without providing contextual information defined for individual snippets

of the specifications so as to organize them and relate them in the system’s state-space.

A lack of such contextual information leaves system designers with no option other

than ad hoc specifications, and no criteria to decide when (i.e. at which state) to start a

scenario and when to stop it. This leads to implicit traversing of inter-contexts, which in

turn impedes the opportunities to elaborate the individual behaviors and discover more

requirements. Synthesis techniques that rely on unstructured specifications pose

problems such as:

(1) Restrictive assumptions; e.g., scenarios should start at an initial state [6] which is

not necessarily the case for all possible scenarios.

(2) Problems arise when merging the independently-generated behaviors from the

partial specifications. For example, generation of nondeterministic transitions [8]

and unavailability of a common refinement [6].

Our hypothesis is that the provision of system contextual information allows us to

scope and structure partial specifications, and enables improved coverage of

requirements. This in turn will expose more opportunities for requirements elaboration

and, when gaps are discovered, new requirements are elicited. In this report, we propose

an approach for structuring the partial specifications by specifying them under pre-

defined scopes or contexts. A system context is a (compound) condition of the system,

defined as a predicate over system variables. The system state space is structured into a

set of contexts, where different pieces of specifications (e.g., different scenarios) are

defined exclusively within the scope of these contexts. Our structuring approach is

based on a disciplined partitioning of system state space using Parnas’ notion of mode-

classes as introduced in A-7E project [9, 10]. A mode-class completely partitions the

state-space into disjoint clusters or modes. Every mode is simply defined as a predicate

over system variables.

It worth noting that the term ‘mode’ is defined and used for two fundamentally different

purposes in the computing literature: modal logic [11] and hybrid systems [12]. The

concept we use here originates in the latter.

The next section of this report provides a brief background on behavioral modeling

approaches and synthesis from partial specifications (Section 2.1) and then we describe

an example motivating our approach (Section 2.2). Section 3 provides definitions and

basic formal basis of the modes and mode-class notions. Based on this formal model of

modes, we describe in Section 4 a synthesis technique that accepts structured

specifications in the form of scenarios organized with mode-classes and, as output, it

generates an integrated state-based model of the system. Related work is discussed in

Section 5.

2. BACKGROUND AND MOTIVATION

In this section, we, firstly, provide some background on scenario-based specifications

and different behavioral modeling approaches. Secondly, we motivate our approach by

an example system.

2.1 Background

2.1.1 Scenario-Based Partial Specifications

There are a variety of ways of describing scenarios. This ranges from informal UML

sequence diagrams [4], possibly annotated with OCL pre/post constraints, to a more

formal Message Sequence Charts, MSC, [5]. An overview of the spectrum of different

dialects of scenario-based specifications can be found in [13]. A higher-level form of

scenarios such as higher-level MSC (hMSC) [14] and interaction overview diagrams

(IOD) [4], provide a flowchart-like composition of lower-level scenarios, which is still

a form of scenario involving some control-flow constructs. To focus on the ideas here,

we use basic sequence diagrams, where operations are annotated with pre/post

conditions in the form of valuations of the vector of system variables.

Despite the debate [15],[16],[17] about what a scenario really is, a general accepted

interpretation is a sequence of interactions steps between the computer system and the

outside environment. A scenario is partially describing the computer system behavior

because it specifies its reactions to the environment’s stimuli as far as the scenario is

concerned. So, the scenario specifications completely specify the computer system

behavior only if they specify all possible environment stimuli and possible

combinations. In practice, however, such complete requirements are not readily

available, particularly at early development stage. A fundamental reason is that,

typically, scenarios are provided by different stakeholders with different viewpoints and

needs [18].

From an automata-based viewpoint, each step in a scenario (action on, or reaction from,

the computer system) is perceived as the progress of the system’s automaton in the

sense that each step modifies one or more domain variables. In a scenario involving a

computer system represented as one component, the successive scenario steps induce an

automaton1 representing a black-box (or interface) behavior of the computer system

with respect to its environment. However, in the presence of structural decomposition

of the computer system itself, architects are also interested in scenarios describing

interactions between the system’s internal components. In the latter case, the scenario

steps induce an automaton representing a clear-box internal behavior describing how

the system implements its reactions in terms of cooperation between its internal

components (note that the induced states involve domain variables plus system-internal

variables).

This observation, amongst others, has motivated several approaches (cf. [6],[7],[8]) to

exploit scenario-based specifications for the purpose of synthesizing an integrated

automata-based behavioral model of the system, given a set of scenarios (or other forms

of partial specifications) as input. A common denominator of these approaches is the

focus on issues related to partiality of specifications, such as detecting negative-

scenarios , implied scenarios [19], and merging behaviors that are independently

compiled from separate scenarios [20]. Synthesis processes developed in these

approaches have raised some issues. For example, constraining the scenarios by

assumptions such as scenario must start from the system’s initial-state [6]. The

partiality-related issues have distracted the synthesis techniques to solve these issues

than to focus on the other challenges of the synthesis process itself. So, in our research

work we pay attention to minimize partiality in the specifications before the synthesis.

1 The reader should remember that this automaton is (typically) just a navigation path in the complete system’s

observable behavior.

The ultimate way to reducing partiality in specifications is to maximize the

opportunities of elaboration and elicitations of requirements, ideally before the

synthesis phase. We propose in this report an approach attempting to maximize such

opportunities, making use of the two most fundamental principles of software

engineering: abstraction and separation of concerns. We partition the state space

completely into a manageable set of disjoint sub-spaces each of which represents a

context of the system, and then we specify scenarios within those contexts. The inter-

contexts transitions are represent as transitions between the scenarios. We use the

notion of mode-classes, early introduced by Parnas [9, 21], to model the partitioning of

state-space. Modes provide the necessary abstraction of the state space, which is

necessary at early stages of developments where incomplete information about the

individual system states is known. The exclusive (i.e. disjoint) contexts provide the

separation of concerns between different scenarios and hence increase the opportunity

for their elaboration.

2.1.2 Behavior Abstraction

Compared to the established structural modeling frameworks, such as the popular

object-orientation [4] and the original work of modular design [22], there is a limited

support for behavior modeling and composition. Typically, system behavior modeling

follows structural decompositions. For example, it is not uncommon for designers to

specify the automaton of each individual component and then use automata-

composition techniques to construct a system behavioral model. A Scenario between

the system’s components is another example of a behavioral model that follows

structural decomposition––interactions between components are based on their

relationships in the structural model (e.g., require/provide interfaces of each

component).

Behavior formalisms such as process algebras and communicating automata are mainly

focused on issues related to parallelism among a set of interacting processes which are

serving as placeholders for components. On the other hand, hierarchical state-based

formalisms do not provide appropriate abstractions in sense of the Dijkstra’s sound

definition quoted in [23]: an abstraction “is one thing that represents several real things

equally well”.

From an automata-based viewpoint, an abstraction hides unimportant details about state

information and shows those details of interest in the abstract model. Models based on

the concept of hierarchical states [24], [25] do not abstract states information, but rather

they factor-out state information and show them across hierarchical levels assuming

that the system could exist in several states at a time. Systems Engineering [26] has

stressed that any system is in exactly one state at a time, and we believe that software is

not an exception. So, promoting the concept of several states at a time actually

jeopardizes the fidelity of the model as well as widening the (already existing) gap

between system engineers and software engineers.

For these reasons, we propose to use the idea of modes and mode-classes, as introduced

in the A-7E aircraft project [9, 10] to formulate an appropriate behavioral modeling

framework. We use this framework to support structuring and elaboration of

requirements specified in partial forms.

2.2 Motivating Example

Engineered Safety Feature Actuation System, ESFAS [27], is a popular example for

illustrating the synthesis of behavioral models from partial specifications (cf. [1]). We

use the ESFAS system (with slight modifications) as a running example to illustrate

concepts presented in this report where necessary.

The ESFAS component is a computer system, part of a power plant, intended to

mitigate damage to the plant on occurrence of faults. ESFAS receives signals from

different sensors
2
 and checks if the signal level has reached predetermined set-points, in

which case ESFAS sends a safety notification to the SafetyHandler component which

deals with the accident. The scenario in Figure 1 shows a sample interaction between

ESFAS and other environment components.

We identified the following system variables to define the ESFAS state at any point in

time:

� the pressure variable pr, is low or norm (i. e., normal value) or perm (i. e.,

permitted) where low<norm<perm;

� the safety signal variable ss, is active , inactive;

� the safety blocking push-button sb, is on or off;

The ESFAS component has the following requirements:

R1. ESFAS activates the safety signal (ss=active) when pr is low, and deactivates it

(ss=inactive) when pr rises to norm level;

R2. ESFAS must not activate the ss if the sb button is on. This enables a human

Operator to block the safety so as to prevent unneeded activation during start-up

(before ESFAS itself initializes) or cool-down phases. The Operator should reset

the button back (sb=off), or otherwise the ESFAS reset it automatically after

timeout duration since it has been set on.

R3. The Operator can block the safety activation only when pr=low;

R4. The Operator can not block the ss while it is already active.

Fig. 1 shows a scenario for the plant. There are two behaviors that are mixed in this

scenario:

� the behaviors in R3 and R4 are modeled by the messages M6 and M9.

� the behaviors in R1 and R2 are modeled by the messages M1, M2, M7 and M8.

The ESFAS component is required to perform the following:

2 We consider here only the Pressurizer sensor. Moreover, in the real ESFAS system, a signal is acquired by voting

among 3 or 4 redundant sensors channels. This voting logic shown in [26] is omitted here for reasons of brevity.

SafetyHandler Operator ESFAS Pressurizer

M1 sb=on

(low, on, inactive) (low, on, inactive)

M2 pr=low

(low, on, inactive)

(low, on, inactive)

M3 pr=norm

(norm, on, inactive)(norm, on, inactive)

M4 sb=off

(norm, off, inactive) (norm, off, inactive)

M5 pr=perm

(perm, off, inactive)(perm, off, inactive)

M6 sb=on

(perm, off, inactive) (perm, off, inactive)

M7 perm=lowM8 ss=active

(low, off, active)

(perm, off, inactive)

M9 sb=on

(perm, off, inactive)

Figure 1: Normal-startup scenario: the Operator blocks the safety signal

activation while the system is starting up.

Moreover, ESFAS has the following constraints:

� The Operator can block the safety activation only when P=PERM;

� The Operator cannot block the safety activation while it is already active.

 These two behaviors are independent but the distinction between them is hidden in the

scenario. This is particularly apparent when the scenario is transformed into state-

machines, where it would then be difficult to identify which state belongs to which

context. The main reason for mixing those behaviors is the lack of systematic

techniques to establish contexts in which the scenarios start and stop. In practice,

designers insert some interactions before and after the core behavior they wish to show

in a scenario, in an attempt to initialize a context for it. Moreover, some approaches

assume that a scenario must start at the initial state [6], which is not necessary for every

scenario. The main reason for that is the lack of systematic techniques to establish

different contexts within which the scenarios are specified.

In summary, the ESFAS example illustrates how the different contexts of the system

can be mixed in the same scenario and this impedes elaboration and full coverage of

requirements. The absence of a proper overarching framework to structure those

contexts, and the scenarios executing within them, allows the specifications to be more

partial and hides potential gaps in the state space. In the rest of this report, we present a

novel framework to structure and organize these contexts and facilitate an improved

synthesis of automata models from scenarios.

3. MODAL BEHAVIOR: FOUNDATION

To manage contextual information, we use the concept of mode as an abstraction of

states to scope out a specific context. Several system modes are organized via a mode-

class. Informally, a mode-class is a collection of modes that completely partitions the

possible system states set into disjoint subsets. Each mode defines a context in which

certain behavior(s) can be specified. The same system can be seen as behaving across

several mode-classes such that the system exists in exactly one mode from each mode-

class. More formally, this means that a system state must belong to exactly one mode

from each mode-class. Every mode-class partitions the (same) system from a different

dimension or viewpoint. This implies that, at any point in time, the system is in several

modes (each from a specified mode-class) but it is in one-and-only-one state.

Consider that the state-space of ESFAS is partitioned by the two mode-classes prMC

and sbMC , where prMC is composed of modes
1
prM ,

2
prM ,

3
prM , while sbMC is

composed of modes
1
sbM and

2
sbM . A graphical view of these mode-classes is shown

in Figure 2, where a mode-class is depicted as a transition-system with an initial mode.

Each mode in a mode-class is characterized by a predicate. For example:

1
prM ⇒ (pr ≤ low),

2
prM ⇒ (pr>low ∧ pr ≤ norm),

3
prM ⇒ [pr ≥ perm]. Intuitively, a

mode is the endurance of the system operation/execution over a set of states that have a

common invariant (mathematically codified as a predicate). The separation of contexts

allows us to reason about each with a manageable scope. The mode-class represents a

skeleton that links partial specifications via cross-behavior transitions.

In the following sections we first give an overview of the different uses of modes in

software engineering, and then provide foundations for modal-behavior modeling that

we use for behavior synthesis from scenarios.

3.1 Modes in Software Engineering

In the computing literature, there are two fundamentally different usages of the term

‘mode’: Modal Logic [11] and Hybrid Systems [12]. The former is used by logicians to

describe so-called necessity and possibility used for multi-valued interpretations of

mathematical logic. This use of the term modes is not related to the work presented

here. The latter usage of ‘mode’ is to characterize a set of related behaviors. For

example, a hybrid system exhibits a set of different behaviors, each of which can be

characterized concisely by a set of continuous differential equations. These behaviors

Figure 2: ESFAS mode-classes: (a) Pressure prMC , (b) Safety Blocking sbMC .

M1 M2 M
3

pr’ < perm

pr’ > low

pr’ < norm

pr’ > norm

pr pr pr

M1 M2

sb’ = sb

sb’ = sb

sb sb

are called system modes. The notion of mode that we use in this report is based on the

ideas presented in [9] and has its origins in the theory of hybrid systems.

Ptolemy [12] is a computing framework for modeling computerized hybrid systems.

Maraninchi and Remond [28] used modes to extend the synchronous language LUSTER

with a mode construct which is, essentially, a discrete version of the hybrid automata

[29].

Other examples in the Software Architecture community includes the use of modes in

AADL [30], an Architecture Description Language where a component behavior is

mapped to a set of modes. Hirsch et al. [31] used modes to identify different structural

configurations of software components in a software architecture model, and this line

of work has been improved in [32] to enable self-management in service-oriented

architectures.

A few existing approaches attempted to formalize a mode-based specifications

techniques. Modechart by Jahanian and Mok [33] is a specification language based on

the RTL logic, however, it is not clear how they formulate the relation between a mode

and a state. Paynter [34] described a viewpoint of relationship between states and

modes, and identified four possible ways to adopt modes in describing system behavior.

Although Paynter adopted the non-exclusive modes option to avoid the proving of

invalid properties (see §2 in [34]), we believe that the idea of mode-classes [10] can

avoid such problems and also promotes fundamental concepts such as separation of

concerns. Moreover, having several mode-classes for the same system allows a state to

belong to several modes (but each mode in a different mode-class) and achieving the

same purpose of non-exclusion option adopted in [34].

3.2 Mode Abstraction

In this section we propose a formal model of the mode and mode-class concepts,

underpinning the system prototype we synthesize in the sense that we use mode and

mode-classes notions to structure scenarios specifications and synthesize an integrated

model. A mode allows to specify a certain context within which one or more scenarios

can be described and elaborated, and a mode-class completely partition the system

space to a disjoint set of such contexts where scenarios can be specified exclusively

within these contexts. Given a set of variables defining the state space of the system, a

one or more mode-classes can be specified first to partition the state-space, and then

scenarios are specified as described above.

3.2.1 Mode vs. State

An abstraction is one thing that represents several real things equally well [23]. We try

here to establish a foundation of an abstraction of system behavior that can represent

several possible state-based implementations. So, we begin by recalling the familiar

concept of system state, or simply state, widely used in general Systems Engineering

[26] and Model-Checking [35]. Simply speaking, a ‘state’ is a unique valuation of all

system variables. With this definition, it is common also that a state is referred to as a

detailed state or concrete state when compared to a more abstract representation. We

use this definition of state here to establish a concrete level relative to which we then

define the mode and mode-class abstractions.

DEFINITION 1 (Concrete State). Let { }= 1 2 nV v , v , ... , v be the set of

variables defining the system context. Assume that the variables ∈iv V range

over a finite set D, the domain of interpretation. The function :t V D→

defines a set of possible concrete states t T∈ such that

1 1 2 2 n nt v d , v d , ... , v d= 〈 ← ← ← 〉 and the variables valuations ←i iv d is an

atomic proposition
3
.

■

The selection of the variables set V is application-specific. We assume the level of

concreteness is characterized by the atomic valuation of all variables vi in the form of

vi=di. For example, the state it pr norm, ss inactive, sb off= 〈 ← ← ← 〉 is a concrete

state in the ESFAS system because every variable is assigned a value in atomic form.

Note that a variable vi may have identical value in several states, but the valuation of all

variables, together, is unique across states.

DEFINITION 2 (Mode). Let { }= 1 2 nV v , v , ... , v be the set of variables

defining the context of a system with S possible states. Let Q be a predicate

over V and interpreted in D. The subset of states M ⊂ T is called a mode M

that is characterized by the predicate Q such that

∃ t∈T, Q(t)⇒ t∈M

■

That is, a mode M is a subset of possible system states that are satisfying some

predicate Q. The predicate Q is said to be characterizing the states in M. This definition

is related to the general notion of predicate abstraction [36] and we use it in the same

sense as in [9].

As an example from the ESFAS system, the predicate Q⇒ ((pr>low ∧

pr ≤ norm) ∧ (sb=off)) characterizes the mode M that contains all sates where pressure is

normal and safety activation is not blocked, regardless of the valuations of other

variables in these states. The state t pr perm, ss inactive, sb off= 〈 ← ← ← 〉 is a concrete

state satisfying Q and belongs to M.

There are two obvious means of abstracting detailed state information. One way is to

omit a variable v from the predicate Q that characterizes M. In such case, Q asserts no

information about v, and hence there could be as several possible states in M that have

different possible valuations of v. Another mean of abstraction is to assign a range of

values to a variable v appearing in the predicate Q. In this case, M will have as several

possible states corresponding to different possible (atomic) valuations. It is needless to

say that both cases can be applied to more than one variable. Using either of these cases

is a designer choice.

When a predicate Q is satisfied by only one state, the mode characterized by Q is said to

be a singleton mode.

REMARK 1 (Singleton Mode). A mode M characterized by a predicate Q is

said to be Singleton Mode if

!t T |Q(t)∃ ∈ .

3 An atomic proposition is a formula with no deeper propositional structure.

That is, M = {t}.

■

This precisely differentiates between a state and a mode in our formulation of modes.

More intuitively, a state must have complete context information, whereas that is not

necessarily for a mode.

3.2.2 Mode and Mode-Classes

In order to structure a scenario, the designer will need to specify several contexts (or

modes) that the scenario is supposed to exhibit such that each mode scopes a snippet of

that scenario. These modes must be disjoint and (together) are covering the system

state-space. Such a collection of modes is referred to as a mode-class.

DEFINITION 3 (Mode-Class). Let { }= 1 2 nV v , v , ... , v be the set of variables

defining the context of a system with S possible states. A collection of

modes = 〈 〉1 2 mMC M , M , ... , M , characterized by a corresponding list of

predicates QMC = 〈 〉1 2 mQ , Q , ... , Q , is called a Mode-Class iff each state

ti∈T is in exactly one mode Mi∈MC. That is,

∀ t∈T,
1=

⊕
j ...m

 Qj(t)

■

A mode-class is a set of disjoint modes––scoping disjoint subsets of states––specified

such that they cover the system state-space. In terms of scenarios structuring, on the one

hand, disjointness of modes is useful because it minimizes redundancies in the

scenario’s steps and facilitates maintenance of the scenario artifact. On the other hand,

the space coverage helps with spotting other contexts not covered by the scenario––

allowing us to reason about what the scenario could do in these contexts and,

accordingly, designers can adjust the scenario and/or the modes.

Let us pause at this point and discuss an important synergy between mode-classes and

scenarios (or partial specifications in general). Since the same system space is possibly

partitionable in several different ways (using different collections of predicates),

designers may specify as several mode-classes as they see fit. Each mode-class

partitions the state-space into a different set of modes. On the other hand, scenarios are

generally perceived as several (possibly disjoint or overlapping) descriptions of the

same system. This suggests that mode-classes allow for defining a variety of contexts

where adding a new mode-class exposes emerging contexts. This provides a fertile

environment to uncover possible gaps within which scenarios can be specified. At the

same time, mode-classes organize those contexts in classes that facilitate independent

elaboration and maintenance of partial specifications. To this end, designers can

initially specify a set of mode machines and then use them as guidance in identifying

independent contexts and write scenarios that fit under the scope of modes in a mode-

class.. Moreover, as we will see shortly, mode-classes provide a disciplined way for

merging a given set of scenarios, which is a major challenge arising in automated

behavior synthesis from partial specifications [20].

Having defined the basic concepts of mode and mode-classes in previous sections, in

the following discussions we use these concepts to define an (automata-based) abstract

behavioral model that we will use as intermediate representation models in our

synthesis process.

3.2.3 Mode Machines

At the mode’s level of abstraction, the system behavior description is a standard

transitions system between the set of modes in a mode-class. We refer to this model as

an Abstract Transition System or, more intuitively, a Mode-Machine
4
.

DEFINITION 4 (Mode Machine MM). For a space T= V, D〈 〉 , a structure

〈 〉0MCMM = V , Q , MC, M , , ε δ is called Mode Machine, where:

� V is a finite set of system variables.

� MC is a mode-class partitioning the space T .

� QMC is a collection of predicates characterizing modes in the mode-

class MC.

� 0M is the initial mode which includes the initial system state.

� ⊆ × ×MC ε MCδ is the transition relation. A transition � from a
iM to

a
jM , denoted a a

jiM M→
� is itself a predicate relation :V V′→� where

the primed variables denote the variables after the transition.

■

The semantics of an MM is that of a standard transition system, with its nodes denoting

modes instead of states. The initial mode 0M is the mode that includes the initial state

of the system. This can be understood directly from the definition of mode-class

(Definition 3): since every state belongs to exactly one mode in the mode-class, then the

initial-state of the system belongs to only one mode––the initial mode 0M .

Note that the exact sets of possible system states, each belong to a mode in an MC, are

yet to be decided. The only information available about those states is the assertion

formulated by predicates in QMC. This also applies to the initial-state. Despite the fact

that the initial-state has not yet been decided, the sub-space (scoped by 0M) where this

state belongs to is specified.

Designers should also provide the transition relation δ between different modes (in the

same mode-class). Defining such a transition relation is a doable task at early stage of

development, particularly because it is guided by the scenario to be described. Mode

transition relation reflects the inter-context transitions, abstracting away from intra-

context transitions that will be extracted from the scenario part which is scoped by that

context.

3.2.4 Refinement of Mode-Machines

The ultimate target for mode-machine refinement is to reach a state transition system.

One challenge is to successively partition the machine’s modes in systematic manner,

such that each mode is divided into lower-level sub-modes (or sub-spaces) of the state-

4 We opted for this naming convention to avoid confusion with Modal Transition System, MTS [37], which uses the

term ‘modality’ in the sense of Modal Logic.

space part scoped by that mode. Another challenge is to elaborate the machine’s

transition-relation such as to connect submodes belonging to different higher-level

modes.

We address those two refinement challenges in the light of scenario structuring. In the

following, the to-be-refined modes will be referred to as ‘higher-level modes’ or just

‘modes’, whereas modes resulting from the refinement will be referred to as ‘sub-

modes’.

3.2.4.1 Refining the state space

Refining the system’s state-space requires each mode in the machine to undergo

successive iterations of partitioning until we have all modes as singletons, while

preserving disjointness and space-coverage constraints. Recall from REMARK 1 that A

mode M is singleton if ! | ()t T Q t∃ ∈ where Q characterizes M. Each mode is partitioned

successively into a set of sub-modes, constituting lower-level mode-class local to that

mode, in the same sense as we have partitioned the whole system state-space into the

very first mode-class.

LEMMA 1 (Mode Refinement). Consider a Mode-Machine

〈 〉0MCMM = V , Q , MC, M , , ε δ . For every non-singleton mode Mk∈MC,

characterized by predicate Qk∈QMC, there exists a mode-class MCk that

partitions the space part scoped by Mk. MCk is referred to as refining Mk,

denoted as Mk≺MCk.

■

PROOF. From Definition 3, the space scoped by Mk is partitioned by MCk

similar to the way the system space is partitioned by MC.

 ■

This means that a partitionable (i.e., non-singleton) mode Mk∈MC can be refined to a

local mode-class which is a set of disjoint sub-modes covering only the Mk’s space

part. The union of this set of sub-modes plus the Mk’s peer modes in MC (excluding Mk

itself) is also a system mode-class that refines MC. More formally,

1{() (\)}= → ∈ ∪ ≺k
i n k kM MC MC M MC

where k
iM is the i-th sub-mode

5
 in the n-modes MCk. This is generalized in the

following theorem.

5 As a notation convention, we use superscript of an element to refer to the higher level item (set or collection)

containing this element. We also use a subscript to an element to denote the position of this element in its

containing item. For example, k
iM denotes the i-th mode element in the MCk, and MCk mode-class corresponds to

the is k-th mode l
kM contained in some mode-class the MCl, and so on , until we reach the highest-level (root) set

MC that has no parent (and no sub/superscript).

THEOREM 1 (Mode-Class Refinement). Consider a Mode-Machine

〈 〉0MCMM = V , Q , MC, M , , ε δ with |MC|=m, m>1. Let Mj∈MC, 1≤ ≤j m ,

be the non-singleton modes in MC. The mode-class MC
R
 defined by the

union

(){ } { { }}\∃ ≤ ∀ ≠= →= ∈ ∪∪
j

jR
 j m j s ji 1 n

MC M MC MC M

is a refinement of MC, MC≺MC
R
, where:

� n the number of non-singleton modes in MC,

� MCj : Mj≺ MCj are the (local) mode-classes refining the non-

singleton modes Mj in MC,

� nj=|MCj| the number of modes in a mode-class and MC≺MC
R
,

� Ms∈MC, for all s ≠ j, are the rest of modes in MC that are not

partitioned in the refinement MC≺MC
R
 (for example, singleton

modes in MC).

■

PROOF. Direct from Lemma 1 and Theorem 1.

■

Theorem 2 can be explained in the reverse way: a mode-class MC is said to be refined

by another mode-class RMC (denoted as MC≺MC
R
) if

(1) there is one or more sets of modes MCj∈MC
R
 , where ≤j |MC| , such that each set

partitions a corresponding mode Mj∈MC, and

(2) {MC \ Mj} = {MC
R

\ {MCj}}, which means that the set of modes in MC that are not

refined by the MC≺MC
R
 relation are appearing identically in MC

R
.

The relation MC≺MC
R
 is intended to be stepwise refinement relation where not all

modes in MC are necessarily refined, but at least one is. It is important to note that the

there may be arbitrarily large possible refinements of the same mode-class. This directly

follows from the fact that there may be arbitrarily large numbers of mode-classes

partitioning the same state-space.

A successive refinement of a mode-class shall ultimately lead to a refined mode-class

where all modes are singletons, each of which contains a unique state from S (the set of

possible states). From refinement perspective, there can be several possible refinements,

each of which results in a different set :T V D⊆℘ × , and each refinement reflects a

design alternative.

3.2.4.2 Elaborating the transition-relation

While the ultimate objective from refining the state-space is to reach a possible set of

system states, the aim of transition relation is to reach a level of detail where each

possible transition connects two states.

We may pause here to clarify what we mean by ‘possible’. A state-transition is an

action which causes the system to move from its current state to a new state. Some of

these transitions may not take place because of physical constraints in the runtime

environment. Another category of those transitions, while not constrained by the

runtime environment, but the system design may constrain them from taking place. So,

we end up with a set of transitions that allowed by the runtime environment and are not

constrained by the design (or requirements). Those transitions are the ones we term here

as possible transitions. The same applies for the case of possible states. This argument

is similar to the NAT and REQ mathematical relations in [38].

Mode-information is useful information at (1) design-time to help in a step-wise

understanding and exploration of system behavior while keeping the whole system view

and avoiding over-specification decisions. Also, analysis techniques applied to

transitions systems such as model-checking and animations can be well applied to

mode-machines because they have the same interpretation of standard automata. On the

other hand, (2) it is useful at runtime too, for example, to help in identifying mode-

specific tasks that are common to all scoped states. In this report, however, we focus on

the application of modes at design time where we use them in structuring the contextual

information of scenarios, and we leave the other potential uses of modes as future work.

Now we begin to formulate the step of mode transitions elaboration. This formulation

will be used in our synthesis process at two milestones: (1) when constructing a number

of mode-machines each of which corresponds to a mode-class along with its scoped

scenarios, and (2) when merging these machines together in one integrated behavior

model. In the sequel, the local mode-class that refines a mode qM will be denoted as

qMC , and the i-th mode in qMC will be denoted as q
iM .

DEFINITION 5 (Mode-Transition Elaboration) Consider

〈 〉0MCMM = V , Q , MC, M , , ε δ and two modes qM , rM MC∈ are refined

such that ≺ q
qM MC and ≺ r

rM MC . A transition q rM M→
� is elaborated

to a set of transitions (:) ()q qr r
ji i,j M M MC MC→∀ ⊆ ×� where

q q
iM MC∈ and r r

jM MC∈ .

■

3.3 Summary

In this section we provided formal abstractions for the concepts of mode and mode-

classes [9, 10], and we defined an abstract form of a transition-system which we call a

mode-machine. A mode-machine describes system behavior at some level of

abstraction, and formally specified as a set of predicates, each predicate characterizing a

mode, and a mode abstracts a disjoint subset of all possible system states. We also

formulated a step-wise approach for refining a mode-machine to a more detailed mode-

machine and eventually to a concrete state-machine model where a state is represented

as complete valuation of system variables. We separated the refinement relation into (1)

space-refinement where modes (or state-space parts) are successively partitioned into

sub-modes until we reach singleton modes––each includes one state only––and (2)

transitions-refinement where a transition between two modes is replaced by a set of

finer transitions between pairs of sub-modes (and eventually pairs of states) resulting

from space-refinement of these two higher-level modes.

This automata-based formulation establishes a basis for structuring scenario-based

requirements specification by augmenting (or scoping) scenarios with contextual

specifications in the form of mode-classes. In the next section we detail a behavior

synthesis process, accepting structured-scenarios as input and producing as output a

state-based system prototype amenable for further analysis and verification, using

stepwise refinement of mode-based models as intermediate representations throughout

the process flow.

4. SYNTHESZING MODAL BEHAVIOR

This section details a synthesis process to generate an integrated behavioral model,

given a set of scenarios and mode-classes as input. The steps of the synthesis process

follow the formal semantics of modes, mode-machines, and their refinement to final

state-machine model (see Section 3). This ensures accuracy of generated prototype, thus

providing validation of the process. Figure 4 shows a schematic diagram showing major

phases of the process.

4.1 Process input

The synthesis process we propose is intended to be part of the software requirements

specifications and analysis cycle. The process semi-automates the construction of

automata-based system prototype, amenable to further analyses such as model checking

[35].

Input to the process consists of three related types of specifications:

(1) A group of scenarios. The scenario format is assumed to be a Sequence Diagram

SD––the simplest form of a scenario. Actions in an SD are annotated with (possibly

incomplete) state information commonly known as pre/post conditions (cf. OCL

[39]). We assume pre/post conditions annotations are in form of a vector <v1, v2 ,...,

vn> which we refer to as the state vector, where vi are system variables. The special

symbol ‘?’ is used in as the value of a variable vi to indicate that the value of this

variable is unknown.

An advantage of our approach is that we do not constrain the designer to specify

complete state information. Sometimes a variable may be absent from pre/post state

vectors, and in another case a variable may have a range of variables instead of

atomic valuation. In either case, we assume designers have not decided yet about

exact valuations of some variables. This is normal and typical situation at early

stages of development.

As we sill see shortly, incomplete state information protects the requirements from

over-specifications resulting from early design decisions, and also facilitates the

merging of machines independently generated from different SDs.

(2) The second type of specifications is a group of mode-classes, MCs (see Section 3),

that augment the SDs such that each mode-class scopes a subset of these SDs.

Designers are expected to specify MCs for the purpose of providing contextual

information for each SD. The relation between MCs and SDs inputs is clarified in

the following two points:

b lock

P =NOR M

P<LOW

b lo ck

P=NORM

P<LOW

Consistency
Check

Compiling
Scenarios

to
Mode

Machines

Scoping

SCNA

SCNB

MCA

Merging
and

refining
Mode

Machines

MCB

T1 T4

T2

T6

T5

S
p
e
c
ifie

s
Manual

Specifications
(process input)

Phase-1

Design Decisions

Design Decisions

System

Constraints
Satisfying

T1

T2

MCAT 3

T 4

MCB

T 5

T6

S
a
tis

fy
in

g

Phase-3

Phase-2

Feedback

LEGEND

Specification flow

Relation

T3

Figure 3: Mode-based behavior synthesis process

(a) Although it is correct to specify MCs such that every SD is scoped with

several modes––one mode from each mode-class––we restrict input

specifications such that an SD is scoped (as a whole) by one and only one

mode from a MC. This means that every set of SDs are associated with an

MC such that each SD is scoped by a mode in that MC. Of course an SD will

be crossing the boundaries of modes in another MC. It is worth noting that a

mode may not be associated with an SD, however every SD is associated

with exactly one mode.

(b) On the other hand, we do not see (so far) any motivation for defining several

SDs in the same mode. If necessary, when a mode happens to be scoping

several SDs, this mode may be broken down into as several sub-modes as

the number of SDs.

In summary (syntactically) we assume a one to one relation between SDs and

modes, and (semantically) the set of SDs scoped by a mode-class are, together, a

structured form of a longer scenario.

(3) The last of type of input is a set of system constraints that assert undesirable system

behaviors––those behaviors that must not be exhibited by the system under

prototyping. Our process exploits these constraints to help in decisions about

potential transitions between modes.

The rest of this section details the individual phases of the synthesis process along with

associated algorithms accompanied by their complexity analysis.

4.2 Phase 1: Preparing Input Specifications

This phase performs consistency checks on two aspects:

� Checking legitimacy conditions of a mode-class (see Definition 3).

� Checking consistency of each scenario with its mode.

� Connecting the modes in the same mode-class with general transitions.

(1) Mode-class legitimacy. Conditions for mode-class legitimacy were already

expressed (on an arbitrary example) by Parnas as “Domain Coverage Theorem” and

“Disjoint Domain Theorem” [40]. A demonstration of automatic check of these

theorems has been done using PVS [41]. In our ongoing tool support work, we are

integrating PVS in similar way to [42], where a tool for an automatic check of Tabular

notations is integrated with PVS.

(2) Scenario and mode consistency is checked by examining the mode’s predicate

against the state-vector valuations (i.e., the pre/post conditions) at every action in the

scenario’s SD. The SD is consistent with its mode if no variable valuation at any

pre/post condition is contradicting with the mode’s predicate. Listing 2 shows a

procedure for this step.

Algorithm SD_Mode_Consistency(V, SD)

Input:

(a) V is a list of n system variables v.

(b) Scenario SD=<ACT,QSD> where:

Actj∈ACT, j≤|ACT|=m, is the set of actions in SD.

Actj=<Prej,Lj,Postj> is an action in SD where: Prej and

Postj are predicates formed as conjunction of

valuations of one or more variables v. Lj is string

label of Actj.

 QSD predicate of the mode scoping SD.

Note: as notational convention, for any predicate Q we use

Q(v) to denote the valuation of v as specified in Q. if a

variable is not specified in Q, then Q(v)=undef.

Procedure:

1 FOR j=1 to m

2 FOR i=1 to n

3 IF (QSD(vi) = {∅} OR Prej(vi) = undef) THEN NEXT j;

4 IF Prej(vi)∈ PSCN(vi) ELSE RETURN 0
5 RETURN 1

Listing 1: Checking scenario consistency with its mode

The basic idea of that procedure in Listing 1 is as follow: For each SD involving a set of

m actions ACT and scoped by a predicate QSD, if a variable vi is valuated in QSD with

some range, then any valuation of vi in any of the SD’s pre/post conditions must be

within that range of vi specified in QSD.

In this sense, QSD plays the role of invariant for all of the pre/post conditions in the SD.

Ideally, but not necessarily, variables involved in a mode’s predicate will be

independent from the pre/post conditions. In our experience, it is better to specify a

mode-class (the SD’s scoping predicate) with respect to variables which are different

from other variables used in specifications of sub-modes (SD’s pre/post conditions).

This allows us to model system behavior by varying the sub-modes’ variables, while

holding other (scoping) variables as invariants. The key point is to decide which

variables to use in either case, and this is an application-specific decision.

(3) Connecting higher-level modes with abstract transitions. In this step, we connect

the higher-level modes in the same mode-class with general transitions such that: for

two modes M1 and M2, characterized by predicates Q1 and Q2, respectively, a transition

from M1 to M2 is added and labeled by Q2. Similarly, another transition from M2 to M1

is added and labeled with Q1. Due to disjointness of modes, the predicate of destination

mode represents the variables’ valuations change that triggers any transition to it.

Complexity Analysis. For step (2), the algorithm in Listing 1 runs in a polynomial

order O(|V|*|ACT|), a where |ACT| is the number of actions in the SD and |V| is the

number of system variables. While a scenario may have a relatively long list of actions,

the number of variables is typically much smaller and so the complexity reduces to a

O(|ACT| log |ACT|). Step (3) is expected to run in constant time, compared to step (2),

because it iterates over modes in every mode-class, with each mode correspond to an

SD, and the total number SDs is negligible compared to the total number of actions in

those SDs. The time effort of the first step is dependent on the response time of the

theorem prover which also expected to be small as the number of system variables are

kept manageable.

4.3 Phase 2: Constructing mode machines

The input to this phase is the same as input to Phase 1, with specifications’

inconsistencies are resolved. In this phase, we translate an MC, combined with the SDs

it scopes, to a mode-machine. This is applied for every MC in input specifications,

resulting in a set of independent mode-machines to be merged in Phase 3.

A machine constructed in this phase has two-level hierarchy of modes and sub-modes.

A higher-level mode-machine consists of those modes belonging to the input MC––

each mode scopes an SD. In each of these modes, there is a set of sub-modes––

constituting a lower-level mode-machine––corresponding to pre/post conditions’

predicates specified in the SD scoped by that mode. For brevity, we will refer to this

lower-level machine as the submode-machine, and we will refer to the higher-level

machine as just a mode-machine.

For every mode-class MC, and the SDs it scopes, we construct one mode-machine with

each of its modes containing one submode-machine. To do this, Phase 2 performs the

following steps:

(1) For every mode in MC, we compile the corresponding SD to a submode-machine.

(2) Modes in MC are then connected together to construct the higher-level mode-

machine as follows: for every two modes M1, M2∈MC, characterized by predicates

Q1 and Q2 respectively, we add a transition ()→1 2M MT labeled by the predicate

⌐Q1 ∧ Q2. A symmetric transition from ()→2 1M MT labeled with ⌐Q2 ∧ Q1 is also

added. Predicates ⌐Q1 ∧ Q2 and ⌐Q2 ∧ Q1 are corresponding to syntactic constraints

(see Theorem 4) on transitions between modes M1, M2. The initial mode is assumed

to be indicated by designer in the definition of mode-class, which is manageable

because typically the number of modes in a mode-class is small. This is compared

to other related approaches where designers have to specify an initial state, which is

more difficult to do at early stage of development. Our approach relieves designers

from this early decision by instead specifying a state-space part (i.e. mode) where

the initial state is expected to lie.

(3) The final step in Phase 2 is to find possible transitions between sub-modes

belonging to different modes in MC. The possible transitions must satisfy the

syntactic-constraints transitions made in the previous step, or otherwise they are not

added to the machine.

(1) Compiling scenarios to (sub) mode-machines. Translating an SD to a mode-based

model (instead of state-based) relieves designers from making early decisions about

complete state-information at the SD’s pre/post conditions––allowing an incremental

exploration of (and building knowledge about) system behavior. On the other hand, it

provides an opportunity for possible interleaving between final states in the final states-

machine model (see Phase 3). As an example, the ESFAS mode-classes prMC and
sbMC are shown visually in Figure 4.

In this step, every SD is translated to a submode-machine

Listing 2 shows a procedure to perform this step.

Algorithm CompileSD(V, SD, MM)

Input:

(a) V is a list of n system variables vi.

(b) SD=<ACT,Q> is a sequence diagram where:

ACT is the list of actions in SD (ordered by

precedence in SD’s flow).

∀Actj∈ACT, j≤|ACT|=m, Actj=<Pre,L,Post>:
Pre and Post are two predicates corresponding to pre

and post conditions, respectively, that are

associated with Actj. The Pre and Post predicates are

formed as. Lj is string label of Actj.

 Q predicate of the mode scoping SD.

(c) MM=<Q,MC,T> is a mode-machine data structure to store

the compiled machine, where:

Q is a predicate scoping MM, MC is a list of modes

constituting MM’s mode-class, and T is a list of

transitions between modes in MC. For all Tr∈T,
Tr=<Ms,Q,Md> connects Ms (src) and Md (dest.) modes,

such that <Ms,Md>∈MC×MC, and Q is the event-predicate
triggering Tr.

NOTES:

Any predicate Q is represented as a conjunction of

valuations of one or more variables vi∈V, where Q(i)
denotes the valuation of vi as specified in Q. When vi

is not specified in Q then Q(vi)=undef.

Procedure:

1 k=1;

2 MM.Q = SD.Q;

3 FOR j=1 to m

4 MM.MC(k).Q = SD.Act(j).Pre;

 MM.MC(k+1).Q = SD.Act(j).Post;

5 linkModes(MM.MC(k), MM.MC(k+1));

6 k++;

7 NEXT j;

8 WHILE k≥1
9 j=1;

10 WHILE j<k

11 FOR i=1 to n

12 IF MM.MC(j).Q(i) ≠ MM.MC(k).Q(i)

13 THEN NEXT i;

14 IF i=n THEN

mergeIdnenticalModes(MM.MC(j), MM.MC(k));

15 NEXT i;

16 NEXT k;

17 NEXT j;

Listing 2: Translating a scenario to a mode-machine

The procedure in Listing 2 does the following majors tasks:

• Steps 1-7 store pre/post conditions as modes into the MSD mode-machine and

add a transition––corresponding to the difference between pre and post

conditions––between these modes using the function linkModes().

Essentially, this builds the initial mode-machine which is a sub-machine to the

mode scoping SD.

• Steps 7-17 searches this mode-machine for identical modes and merge them

together. Two modes are identical if they are characterized by identical

predicates. The function mergeIdenticalModes() merges two identical

modes in one mode that has the union of the two modes’ incoming and outgoing

transitions.

As an example, Figure 4 shows the refined mode-machine corresponding to mode-class
prMC in the ESFAS system. The lower-level machines correspond to SDs scoped by

the mode-classes. For space reasons, we have omitted these SDs, but they still can be

straightforward understood from the figure. Nodes in those machines are (sub) modes

corresponding to pre/post conditions in the compiled SDs. The higher-level machines

are corresponding to prMC and sbMC classes.

Note that in MC
A
, transitions between modes that appear in Figure 2 are refined into

transitions between lower-level sub-modes. The next step in this phase will explain how

those transitions are refined.

A final noteworthy point about the machine in Figure 5: according to Theorem 2

(Section 3) a sub-machine of a certain mode must be a refinement of this mode.

However, it is not the case with the sub-machines in Figure 5 because an SD’s pre/post

conditions are not necessarily expressed by the designer to completely covering the

pr=norm

pr-low

pr=norm

pr=perm

pr=low

ss=inactive

sb=on

pr=low

ss=active

sb=off

Block Pressed

Block Released

Block TimeOut

pr=norm

sb=on

pr=norm

sb=off

Block Pressed

Block Released

Block TimeOut

pr=perm

sb=off

Block Pressed

pr=norm pr=norm

pr=norm

pr-low

pr-low

pr=low

pr=norm

Figure 4: ESFAS mode-machine MC
p
 after Phase 2. (For brevity reasons, we

omitted the variables with unknown value ‘?’).

space part scoping this SD. This semantic problem will be resolved in Phase 3 where all

(high-level) mode-machines are merged together such as they partition each other,

resulting in one integrated mode which is a common refinement of any of the machines.

(2) Refining transitions. In this step, we refine transitions between the scoping modes–

–the higher-level modes that scope SDs. In terms of scenarios specifications, these

transitions are connecting different scenarios that are scoped by different modes in the

same mode-class. Abstraction as the key for invariant verification

For two modes M1 and M2, characterized by predicates Q1 and Q2, refining the

transition 1 2M M→
� is the process of finding all possible (but legal) transitions from

sub-modes in M1 and those sub-modes in M2 For example, in Figure 2, the transitions

between higher-level modes in MC
A
 machine are replaced by transitions between

submachines of these modes. Figure 5 shows the refinement of transitions between

modes
1
prM ,

2
prM (refinements of other transitions are not showen for space reasons).

The procedure in Listing 3 performs this refinement step.

Algorithm RefineTransitins(MM)

Input:

(a) MM=<QMM,MC,T> is a mode-machine where:

QMM is a predicate scoping MM, MC is a list of modes

constituting the machine’s mode-class, and T is a list

of transitions between modes in MC. For all Tr∈T,
Tr=<Ms,Q,Md> connects Ms (src) and Md (dest.) modes,

such that <Ms,Md>∈MC×MC, and Q is the event-predicate
triggering Tr.

(b) System constraints C

(c) TTEMP is temporary list of transitions

Note:

(1) The predicate QMM scopes the whole system because M a
system-level machine. So QMM is not meaningful and used

here only for notational reasons.

Procedure:

1 WHILE s=1 to m

2 WHILE d=s to m

3 TTEMP = detectPossibleTransitions(Ms, Md);

4 FOR i=1 to sizeof(TTEMP)

5 IF Satisfied (TTEMP(i).Q, Md.Qj)

6 IF Satisfied (TTEMP(i), C)

7 IF designerAccepts(TTEMP(k))

8 THEN addTransition(TTEMP(k), Ms, Md);

9 Next d;

10 Next s;

Listing 3 Refining transitions between higher-level modes.

The function detectPossibleTransitions() checks for differences (in

variables’ valuations) between the predicates scoping Ms and Md. If a variable appears

in both predicates with different values, then there is a potential transition between Ms

and Md. Detected transitions are then put under three complementary tests:

(a) A transition is allowed only if it is valid (Theorem 4). That is, a transitions is

allowed if it satisfies Qd which is the predicate characterizing the destination (sub)

mode. In general, a transition from (or to) a mode must be valid for all sub-modes

of this mode. This is the case with syntactic transitions we added in Phase 1 step 3.

However, designers may (manually) specify a transition that thought be valid, but it

is not. For example, in the mode-class MC
B
 Figure 2, the transition “Block

timeout” is manually-specified transition, and it must be checked against the

source and destination modes’ predicates. In short, this step is intended to check the

validity (according to Theorem 4) of manually-specified transitions.

(b) A transition is allowed only if it satisfies the (user-defined) system properties or

constraints C (part of the inputs to the synthesis process).

(c) If a transition passed the two checks above, then it must be finally checked by a

designer to see if it is realistic or not. It is important to understand the system’s

actual behavior so as to avoid over- or under-specifications. As an example of this

type of transitions, consider the red-colored transition pr=norm in Figure 5 between

the states <pr=low,ss=inactive,sb=off> and <pr=norm,ss=?,sb=on>. This

transition is syntactically correct and also it does not violate any of the ESFAS

constraints given in Section 2.2. However, the designer can easily detect that this

transition is not safe because it allows the ESFAS system to automatically block the

safety activation (sb=on) which is very unsafe to leave such critical action to be

automatically decided by ESFAS. The designer then would disapprove such a

transition to be added to the system behavior model, and may also add it to the set

of system constraints C.

Despite the fact that an event is syntactically correct (and does not violate system

constraints) it may be an over-specifications because such an event stet leads

verification tools to incorrectly indicate false errors that do not happen at runtime [35].

The same situation occurs with under-specifications, where an event could happen at

runtime but has not been specified in the model.

It is important to note that the transitions to be derived manually are user-friendly

because they are still at the level of modes, not states. Moreover, a proper tool support

can help the designer to stop this transition-detection process at some given level of

detail.

These constraints are expected to reduce the number of manually-resolved transitions to

a manageable list to be resolved (semantically) by the designer.

Complexity Analysis. This phase takes the largest effort in the whole process. For step

(1), the algorithm in Listing 2 has a complexity of O(|ACT|
2
) calculated as follows:

- steps 1-7 has a |ACT| number of iterations. The function linkModes() takes

constant time because it adds just one transition corresponding to the difference in

variables’ valuations in the two modes.

- steps 7-17 has a (k*j)/2 number of iteration, but since k=2*|ACT| (two modes per

action) then the number of iterations are |ACT|
2
. The function

mergeIdenticalModes() takes constant time because each of the two modes

has exactly two transitions (due to the sequential nature of a scenario).

For step (2), algorithm in Listing 3 makes a heavy use of theorem prover to check

satisfiability of system constraints. Moreover, the algorithm involves designer’s

decisions. Assuming all external effort is constant, the algorithm executes in

O(|V|*|ACT|
2
) where detectPossibleTransitions() involves |V| iterations.

So, Phase 2 runs in is a polynomial time of O(|ACT| + |ACT|
2
 + |V|*|ACT|

2
) that

reduces to O(|V|*|ACT|
2
) and further to O(|ACT|

2
 * log|ACT|) if |V| is kept much less

than |ACT|.

4.4 Phase 3: Merging and refining mode-machines.

While the first two phases are concerned with refining each mode-machine

independently, this phase merge those refined machine together in one integrated

model. This is done in by (1) pair-wise merging of refined machines into one integrated

mode-machine, and (2) then a state-information refinement is done on all modes in this

integrated model so that each mode is refined to a singleton by adding the missing state-

information. The second step is a yet more chance for designers to explore the state-

space and add possible states as we will see shortly.

The two steps are summarized as follows:

(1) Merging a pair of mode-machines AM and BM involves two sub-steps: (a)

determining the intersection between modes in every modes pair

< A
iM , >B

jM ∈ AM × BM , and (b) adjusting the related transitions in AM and BM

to accommodate the resulting intersection-modes. This is repeated for every two

machines until we reach to one integrated system model.

(2) Each mode in resultant system model is then refined by adding state-information so

that each mode becomes a singleton mode––a mode containing one only one state

(see Remark 1). A mode reduces to a state if the mode’s predicate is equivalent to a

complete variables’ valuation.

(1) Merging a pair of mode-machines. The merge process is motivated by a

fundamental principle of mode-classes: they are behavioral-classifications of the same

system and specified from different dimensions. This means that a mode A
iM ∈ AM

must overlap with at least one mode B
jM ∈ BM , and it possibly overlaps with as several

as all modes in BM . It is straightforward to note that in case A
iM overlaps with only

one mode from B
jM , then this implies that A

iM ⊆ B
jM . This remark helps to optimize

the procedure performing this step, shown in Listing 5. The procedure has two

components, explained as follows:

for every pair of machines AM and BM such that = → ∈A
i 1 nM AM and = → ∈B

j 1 mM BM :

(a) First, identifying possible overlap between every modes pair < A
iM , >B

jM . If
A

iM overlaps with B
jM then we modify A

iM to be A
iM \{ }∩A B

i jM M . Similarly we

modify B
jM to be B

jM \{ }∩B A
j iM M , and finally we create a new mode { }∩A B

i jM M

that scopes their intersection. Sub-modes of A
iM and B

jM that are lying in the

overlap space are assigned to the newly created mode. Moreover, the new mode is

updated by those existing transitions connected to the overlap sub-modes and are

crossing the boundaries of the new mode.

(b) Second, detecting and resolving possible transitions between overlapping modes. In

terms of scenarios, an overlap two between two modes A
iM and B

jM indicates that

the two scenarios scoped by A
iM and B

jM have potential for transitions’

connections between their sub-modes (or states in the final model). For example,

one scenario may be starting after the other, or even the execution may be jumping

between states in these scenarios. This avails a further opportunity for enriching

system behavior.

Algorithm mergeMachines(AM , BM)

(a) Two mode-classes MA (light) and MB (dark), each
has two higher-level modes (the outer rectangles). In
each mode-class, a higher-level mode contains a
lower-level mode-machine with only two modes. The

lower-level modes in MA are numbered to help
illustrating the merge process The lower-level
mode-machines in each higher-level mode are
connected by transitions refined in Step 3 of Phase 2.

(b) Mode M1
A is overlapping with both modes in MB

(c) Mode M1
A is merged with both modes in MB

(d) Mode M2
A is overlapping with the rest of MB

(e) Mode M2
A merged with rest of MB

2

4

1

3

(a)

(b)

2

4

1

3

2

4

1

3

(c)

2

4

1

3

(d)

3

4

1

2

(e)

A

1
M

A

2
M

B

2
M

B

1
M

AM
BM

Figure 5: Illustration of mode-classes merging process

Input:

(a) Machines =< , , >A A A AM Q MC T and =< , , >B B B BM Q MC T where → ∈i=1

A

nM AM

and → ∈j=1

B

mM BM .

(b) System constraints C

(c) TEMPT is temporary list of transitions

(d) TEMPM :temporary mode data structure to hold overlap

space and its submodes

Procedure:

1 WHILE i=1 to n

2 WHILE j=1 to m

3 TEMPM = determineOverlapSpace(A

iM , B

jM);

4 IF TEMPM ≠ {∅}

5 THEN TEMPT = detectPossibleTransitions(TEMPM , A

iM);

 connectMachines(TEMPM , A

iM);

 TEMPT = detectPossibleTransitions(TEMPM , B

iM);

 connectMachines(TEMPM , B

iM);

6 Next j

7 Next I;

Listing 4: Merging mode-machines A
iM and B

jM

Figure 5 shows a general case example of merging two machines AM and BM , where

each machine consists of two modes. (For brevity, potential transitions between newly

created modes are not shown in Figure 5).

(2) Final modes-to-states refinement. In this step, the single integrated mode-based

system model built so far is refined to a state-based model. This is done by iterating

over all modes in this model and completing the missing state-information so that every

mode reduces to one state––a singleton mode. The missing state-information in a mode

is either a missing variable (does not appear in the mode’s predicate) or a variable

defined with a range of values. In the former case, the missing variable is presented to

designer to make a decision regarding its value. In the latter case, the designer must

decide either to consider the value-range as one atomic value, or alternatively to create

several states in the mode so as to accommodate the variation of this variable within the

specified range. In either case, considering the variable’s valuation in neighboring

modes (or states) is helpful. Once every mode is resolved to state(s), the machine model

will have complete state information. It is important to note that mode-hierarchy

information (i.e. modes’ predicates and modes-sub-modes relations) are retained in the

model for design-time analysis. At runtime, however, this information is (formally)

redundant such that the system exists in one and only one state at a time––this

distinguishes our model from hierarchical state-machines formalisms. However, it is

possible for an implementation to make use of mode-information for optimization

purposes (e.g. performing a task which is common to all states in a mode, instead of

repeating it each time a state in this mode is entered).

Complexity Analysis. Algorithm in Listing 4 has a complexity effort of

O(3*|V|*|SDs|
2
) where |SDs| is average number of scenarios per mode-class input to

the process (see process inputs Section 4.1) and each of the functions

determineOverlapSpace()and detectPossibleTransitions()

involves |V| iterations. This complexity is acceptable because the number of scenarios

in a mode-class is equal to the number of modes in this mode-class (see section 4.1).

4.5 Summary

We have described in this section a synthesis process that takes as input a collection of

scenarios snippets organized under the scope of a corresponding collection of mode-

classes. The intermediate models of the process are maintained as mode-machines until

the last step. As we showed in the individual phases, this helped to reduce the effort and

complexity that would be required by the process procedures if we moved directly to

state-models from the outset. The process involves some interactions with the designer,

particularly when connecting modes together and when creating new modes in the

merge process.

5. DISCUSSION AND RELATED WORK

A wide range of techniques have been proposed to automate the construction of

behavioral models out of partial specifications in general and scenario-based

specifications in particular.

To the best of our knowledge, no prior approach addresses the structuring of contexts in

partial specifications in terms of providing coverage of behavior space and prevents

inter-contexts traversing. However, on the other hand, the extraction of contextual

information from a given specification is often done [43],[44]. In the following

discussion, we discuss these approaches, and the others related ones, with respect to

each issue of behavior synthesis.

On partiality. A common direction for addressing partiality is to enrich the machines,

independently-generated from scenarios, with possible behaviors and delay refinement

decisions at the merging phase. Uchitel et al. [45] (and improved in [20]) use special

logic to capture the possible behaviors. Krka et al. use the same technique but to

generate component-level models. Another range of techniques (c.f. [23-25]) infer

behaviors from the given specifications. A common denominator of these approaches is

the use of bare scenarios without a structuring framework. This distracts the synthesis

process from generating correct and structured models to issues related to partiality

itself. We consider partiality as symptom of the main problem of a lack of a framework

within which the partial specifications are described. We assume simple form of

scenarios as input; however we augment it with mode specifications to provide

structuring and scoping of each scenario.

Other proposals accept more expressive forms of scenario than an SD as input. Uchitel

et al. [19] synthesize behavioral models from Message Sequence Charts [5] to detect

implied scenarios. Whittle and Jayaraman [46] use the recent Interactions Overview

Diagrams IOD in UML 2.0 [4] to generate Statechart-based designs. Though specified

at a higher-level, these forms of scenarios specification express control-flow

information between lower-level scenarios— a yet more operational view of the system

with some control information similar to that of flow-charts. The higher-level feature in

such specifications does not address coverage or integration between the lower-level

scenarios. Our approach is distinct from these proposals by structuring the

specifications in the state-space rather than a flowcharting structure.

On abstraction. This direction of work augments the partial specifications with

auxiliary specifications in some form of abstraction to help overcome complexities in

the synthesis process. Sun and Dong [43] combine Live Sequence Charts, LSC, with Z

specifications. They use predicate abstraction techniques to find predicates in LSCs.

Although they extract abstract state-information similar to modes in our approach, the

extracted information does not guarantee scoping (coverage) of state-space as we do by

mode-classes. Also the mode-classes help designers to structure the specifications, and

provide feedback about the underspecified aspects of scenarios, hence helping for

earlier elicitation of more requirements. Another recent work of de Caso et al. [44]

automatically constructs useful FSM-like abstractions from specifications based on

pre/post conditions. Although the extracted abstraction is promising for its intended

validation purposes, it is similar to [43] in the sense that it is extracted from a given

specification and does not guarantee space-coverage as we do with mode-based

specification.

We use modes as user-defined specifications rather than extractions from scenarios. We

have provided a formal basis for specifying modes and partitioning the system state-

space from different dimensions, based on the idea in [10], and sticking to standard

mathematical concepts without using any unfamiliar formal philosophies– thus

allowing the model to be applied to a wider range of applications. In this sense modes

can be applied to other partial specifications such as goals and properties. In the general

sense, we envision mode-based design to be used as a design methodology similar to

Statecharts, but avoiding the mix between higher-level state and mode.

On Synthesis Process and tooling. Our proposed process is quite interactive with the

designer. The level of designer involvement depends to a great extent on the availability

of system constraints (such as safety properties) to cut down the possible transitions.

Agreeing with others (cf. [7]), we consider this to be a positive thing as it contributes to

designer’s experience with the system. The feedback to the designer helps to flesh-out

the system details as early as possible, and yet presents the information in abstract form

(modes) without overwhelming details.

Several of the related approaches assume designer’s involvement at some stage in the

synthesis process. Krka et al. [8] assume nondeterministic transitions appearing in

Phase 2 of their synthesis process. In Mäkinen and Systä [47], their MAS tool

generates component-level behavior. Based on grammatical inference, MAS asks the

designer trace questions in order to avoid undesirable generalizations. (A trace question

is a path in the state machine local to a specific agent). MAS focuses on single agents;

generalization must therefore be done independently for each software agent. Trace

questions may be quite hard for designers to understand as they do not show global

system behaviors. The same applies in Damas et al. [48], where the designer is

presented with scenario questions to classify it as positive or negative. A related

assumption about designer-involvement is also made in other inductive-learning

approaches such as [49].

when involving the designer, the key point in our opinion is not to present the designer

with too detailed information to comprehend. In our approach, we present mode-level

information to the designer, and the designer still has the option to delve into more

details when needed.

On the other hand, generating and manipulating mode-machines throughout the

synthesis process (instead of state-machine as in almost all related proposals) avoids a

possible explosion of states. The disjointness of modes in the same mode-class helps to

avoid non-deterministic transitions between lower-level modes when merging mode-

machines. Finally, partitioning the state-space allow designers to relax the assumption

that a scenario must start at an initial state so that they can describe scenarios that start

at any state within its scoping mode.

6. CONCLUSIONS

We propose a framework to support rapid prototyping of system behavioral model from

partial specifications, in the form of sequence diagrams, and mode-based specifications.

We use the classic idea of modes and mode-classes to structure the partial specifications

so as to provide adequate coverage of system requirements at early stages of

development. Modes abstraction is a powerful concept for scoping and decomposing

system behavior. The flexibility provided by mode-classes for partitioning the behavior

from different viewpoints (or dimensions) allows designers to, intuitively, define

contexts and specify detailed behaviors within those contexts, in a stepwise refinement

process. These behaviors may be, for example, precise functions [27], goals [1] or

scenarios, as the case in this report.

We complemented this framework with a (semi) automated synthesis process to

generate behavior models of sequence charts that are structured and scoped by mode-

classes. The resulting models are standard automata-based and are amenable to further

reasoning using off-the-shelf model-checkers or simulation/testing tools. The proposed

framework supports designers by giving feedback about unforeseen aspects––situations

or contexts not covered by the existing scenarios––that can be used to elaborate those

requirements and discover new requirements early in the development process.

Future developments of our approach include (1) implementing a tool for the synthesis

process. (2) Integrating an off-the-shelf theorem prover to support complex predicate

specifications so as to relax the assumption we made in Section 4.1, (3) Evaluate the

approach on a real world system to evaluate its effectiveness as a design methodology

and to evaluate the time complexity of prospective tool.

ACKNOWLEDGEMENT

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1

to Lero – the Irish Software Engineering Research Centre (www.lero.ie).

REFERENCES

[1] Letier, E., Kramer, J., Magee, J. and Uchitel, S. Deriving event-based transition

systems from goal-oriented requirements models. Automated Software

Engineering, 15(2)2008).

[2] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton and E. Yu

Evaluating Goal Models within the Goal-oriented Requirement Language.

International Journal of Intelligent Systems (2010).

[3] Kazhamiakin, R., Pistore, M. and Roveri, M. Formal Verification of Requirements

using SPIN: A Case Study on Web Services. In Proceedings of the Software

Engineering and Formal Methods (2004), [insert City of Publication],[insert 2004

of Publication].

[4] OMG UML Specification (2.0), Object Management Group (UML Revision Task

Force), Sept. 2003, http://www.omg.org/uml.

[5] ITU Recommendation Z.120: Message sequence chart. International

Telecommunication Union, City, 2000.

[6] Uchitel, S., Brunet, G. and Chechik, M. Synthesis of Partial Behavior Models

from Properties and Scenarios. IEEE Trans. Softw. Eng., 35(3)2009).

[7] Whittle, J. and Schumann, J. Generating statechart designs from scenarios. City,

2000.

[8] Krka, I., Brun, Y., Edwards, G. and Medvidovic, N. Synthesizing partial

component-level behavior models from system specifications. In Proceedings of

the Proc. of the ESEC/FSE (2009). ACM, [insert City of Publication],[insert 2009

of Publication].

[9] Heninger, K. L. Specifying Software Requirements for Complex Systems: New

Techniques and Their Application. Software Engineering, IEEE Transactions on,

SE-6, 1 1980), 2-13.

[10] Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker;, R. A., Parnas, D. L. and

Shore, J. E. Software requirements for the A-7E aircraft. Naval Research Lab,

Washington, DC, 1992.

[11] Kripke, S. Semantic considerations on modal logic. Acta philosophica

fennica1963).

[12] Lee, E. A. Finite State Machines and Modal Models in Ptolemy II. Teh.Report

UCB/EECS-2009-151, EECS Department, University of California, Berkeley,

2009.

[13] I. Krüger, Distributed system design with message sequence charts, Dissertation,

Technische Universität München, 2000.

[14] ITU Recommendation Z.120: Message sequence chart. International

Telecommunication Union, City, 2004.

[15] Benner, K., Feather, M. S., Johnson, W. L. and Zorman, L. A. Utilizing Scenarios

in the Software Development Process. In Proceedings of the Proceedings of the

IFIP WG8.1 Working Conference on Information System Development Process

(1993). North-Holland Publishing Co., [insert City of Publication],[insert 1993 of

Publication].

[16] Campbell, R. L. WILL THE REAL SCENARIO PLEASE STAND UP? SIGCHI

Bull., 24, 2 1992), 6-8.

[17] Campbell, R. L. Categorizing scenarios: a quixotic quest? SIGCHI Bull., 24, 4

1992), 16-17.

[18] Hunter, A. and Nuseibeh, B. Managing inconsistent specifications: reasoning,

analysis, and action. ACM Trans. Softw. Eng. Methodol., 7, 4 1998), 335-367.

[19] Uchitel, S., Kramer, J. and Magee, J. Incremental elaboration of scenario-based

specifications and behavior models using implied scenarios. ACM Trans. Softw.

Eng. Methodol., 13(1)2004).

[20] Uchitel, S. and Chechik, M. Merging partial behavioural models. SIGSOFT Softw.

Eng. Notes, 29(6)2004).

[21] Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker;, R. A., Parnas, D. L. and

Shore, J. E. Software requirements for the A-7E aircraft. Naval Research Lab,

Report No. NRL-9194, ,1992.

[22] Parnas, D. L. Designing software for ease of extension and contraction. In

Proceedings of the Proc. of ICSE (1978), [insert City of Publication],[insert 1978

of Publication].

[23] Forum. Communications of ACM, 50(6)2007), 7-9.

[24] Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8, 3 1987), 231-274.

[25] Beeck, M. v. d. A Comparison of Statecharts Variants. In Proceedings of the

Proceedings of the 3rd Intl. Symp. Formal Techniques in Real-Time and Fault-

Tolerant Systems (1994). Springer-Verlag, [insert City of Publication],[insert

1994 of Publication].

[26] Mesarovic, M. C. and Takahara, Y. Abstract Systems Theory. Springer, 1989.

[27] Courtois, P.-J. and Parnas, D. L. Documentation for safety critical software. In

Proceedings of the Proc. of ICSE (1993), [insert City of Publication],[insert 1993

of Publication].

[28] Maraninchi, F. and Remond, Y. Mode-automata: a new domain-specific construct

for the development of safe critical systems. Sci. Comput. Program., 46(3), 3

2003), 219-254.

[29] Maler, O., Manna, Z. and Pnueli, A. From Timed to Hybrid Systems. In

Proceedings of the Proceedings of the Real-Time: Theory in Practice, REX

Workshop (1992). Springer-Verlag, [insert City of Publication],[insert 1992 of

Publication].

[30] Feiler, H. P., Lewis, B., Vestal, S. The SAE Architecture Analysis and Design

Language (AADL) Standard. IEEE RTAS Workshop, 2003.

[31] Hirsch, D., Kramer, J., Magee, J. and Uchitel, S. Modes for Software

Architectures. In Proceedings of the EWSA 2006 (2006). LNCS, Springer Verlag.,

[insert City of Publication],[insert 2006 of Publication].

[32] Foster, H., Uchitel, S., Kramer, J. and Magee, J. Towards Self-management in

Service-Oriented Computing with Modes. Springer-Verlag, City, 2009.

[33] Jahanian, F. and Mok, A. K. Modechart: A Specification Language for Real-Time

Systems. IEEE Trans. Softw. Eng., 20(12)1994).

[34] Paynter, S. Real-time mode-machines. City, 1996.

[35] Edmund M. Clarke, J., Grumberg, O. and Peled, D. A. Model checking. MIT Press,

1999.

[36] Graf, S. and Saidi, H. Construction of abstract state graphs with PVS. City, 1997.

[37] Larsen, K. G. and Thomsen, B. A modal process logic. City, 1988.

[38] Parnas, D. L. and Madey, J. Functional documents for computer systems. Sci.

Comput. Program., 25, 1 1995), 41-61.

[39] OMG UML Specification (2.0), Object Management Group, Sept. 2003.

[40] Parnas, D. L. Some Theorems We Should Prove. In Proceedings of the

Proceedings of the 6th International Workshop on Higher Order Logic Theorem

Proving and its Applications (1994). Springer-Verlag, [insert City of

Publication],[insert 1994 of Publication].

[41] Rushby, J. M. and Srivas, M. K. Using PVS to Prove Some Theorems Of David

Parnas. In Proceedings of the Proceedings of the 6th International Workshop on

Higher Order Logic Theorem Proving and its Applications (1994). Springer-

Verlag, [insert City of Publication],[insert 1994 of Publication].

[42] Jing, M. A Tabel Checking Tool. Dept. of Elect. and Computer Engineering,

McMaster University, 2000.

[43] Sun, J. and Dong, J. S. Design Synthesis from Interaction and State-Based

Specifications. IEEE Trans. Softw. Eng., 32(6)2006).

[44] Caso, G. d., Braberman, V., Garbervetsky, D. and Uchitel, S. Validation of

contracts using enabledness preserving finite state abstractions. In Proceedings of

the Proc. of ICSE (2009). IEEE Computer Society, [insert City of

Publication],[insert 2009 of Publication].

[45] Uchitel, S., Kramer, J. and Magee, J. Behaviour model elaboration using partial

labelled transition systems. SIGSOFT Softw. Eng. Notes, 28(5)2003).

[46] Whittle, J. and Jayaraman, P. K. Synthesizing hierarchical state machines from

expressive scenario descriptions. ACM Trans. Softw. Eng. Methodol., 19(3)2010).

[47] Mäkinen, E. and Systä, T. MAS - an interactive synthesizer to support behavioral

modelling in UML. In Proceedings of the Proc. of ICSE (Toronto, Ontario,

Canada, 2001), [insert City of Publication],[insert 2001 of Publication].

[48] Damas, C., Lambeau, B., Dupont, P. and Lamsweerde, A. v. Generating Annotated

Behavior Models from End-User Scenarios. IEEE Trans. Softw. Eng., 31(12)2005).

[49] Alrajeh, D., Kramer, J., Russo, A. and Uchitel, S. Learning operational

requirements from goal models. In Proceedings of the Proc. of ICSE (2009). IEEE

Computer Society, [insert City of Publication],[insert 2009 of Publication].

	Cover Page Tech Report.pdf
	shokry.Lero-TR-2010-01.pdf

