
Innovation Potential of
Software Technologies

in the context of
Horizon 2020

DISCLAIMER
The ideas and opinions expressed in this document are solely those of the authors and endorsement by European Commission, DG CONNECT, or any other body
should not be inferred, nor is implied.

Mike Hinchey

Director, Lero-the Irish Software Research Centre and Professor of

Software Engineering, University of Limerick, Ireland

Brian Fitzgerald

Chief Scientist, Lero-the Irish Software Research Centre and

Frederick A. Krehbiel II Chair in Innovation in Business and

Technology, University of Limerick, Ireland

Brian Donnellan

Principal Investigator, Lero-the Irish Software Research Centre and

Professor of Information Systems Innovation, Maynooth University,

Ireland

Tiziana Margaria

Principal Investigator, Lero - the Irish Software Research Centre

and Professor of Software Systems, University of Limerick, Ireland

23 September 2016
Prepared for

European Commission
Directorate-General of Communications Networks, Content and

Technology (DG CONNECT)
Unit E.2 – Software & Services, Cloud

Innovation Potential of Software Technologies | 3

EXECUTIVE SUMMARY... 4

1	 INTRODUCTION... 6

2	 THE SOFTWARE CRISIS... 7

2.1	 Background..7

2.2	 Software Crisis 2.0...9

2.3	 New Skill-sets Required for Software Designers and Developers.. 11

3	 SOFTWARE AS AN INNOVATOR..14

3.1	 Innovation in Software Development Processes.. 15

3.2	 The Increasing Importance of Software in Innovation Processes.. 18

3.3	 Software as an enabler of Future Digital Disruptions.. 19

3.4	 Potential Areas of Innovation relevant to Europe.. 20

3.4.1	Financial Services- APIs for Currency Transactions.. 20

3.4.2	Smart Agriculture and Food.. 20

3.4.3	Media... 20

3.4.4	Retail.. 20

3.4.5	Transport... 21

3.5	 Open Source Software... 22

3.5.1	Open Data Services.. 24

4	 EVOLVING CRITICAL SYSTEMS..25

4.1	 ECS and Software... 26

4.2	 Related Work in Software Evolution... 27

4.3	 Research Questions... 28

5	 RECOMMENDATIONS FOR THE COMMISSION..29

5.1	 Context.. 29

5.1.1	Commission Support.. t30

5.1.2	International Experience... 30

5.2	 Recommendation regarding Open*.. 31

5.2.1	Status Quo... 31

5.2.2	Open-*... 33

5.3	 Final Recommendations.. 34

REFERENCES..35

Table of Contents

4 | Innovation Potential of Software Technologies

Executive Summary

The increasing demand for software is fueled by the

increasing capability of software to perform tasks that were

previously accomplished through some form of hardware.

Also evident is the move beyond Internet of Things (IoT) to

Systems of Systems where the sensors and sources of data

are fully integrated into web-enabled systems capable of

utilizing machine learning techniques to offer real-time data

analytics with the ultimate goal of enabling societal benefits.

However, many problems continue to exist in software

projects, which can be attributed to poor preparation,

poor project management, insufficient understanding, and

insufficient resources. We have reached a second software

crisis (Software Crisis 2.0).

One issue is the massive increase in the volume and quality

of software required to fuel the demand in new domains

where software has not been always of primary significance.

The software required for domains such as health and

medicine cannot be “more of the same”: in the face of a

bustling landscape of apps and applications for patients and

professionals alike, most of the designers/developers do not

have a technical background, and in the larger applications,

such as Hospital Information Systems and similar, silos still

dominate, making integration costly and difficult.

This situation is replicated across several business domains

as the transformation to software has been taking place

for quite some time. We envisage a similar evolution to
occur in a whole range of industries, most notably in

those industries traditionally associated with the production

of physical goods or devices, where software has been a

major source of innovation.

Innovation in software development is not fundamentally

different from other types of innovations but certain traits

set it apart along several dimensions of the technological and

economic decision space: low capital investment intensity,

continuous user contribution, and frequent releases and

updates.

Companies in a range of industries are using software to

achieve innovation, as software costs much less in material

terms and quality software enables frequent and speedy

change.

A number of domains relevant to software research are

showing promise with great potential for innovation in areas

such as financial services, smart agriculture and food, media

of various formats, retail and transportation.

The Open Source Software (OSS) phenomenon has certainly

transformed the traditional proprietary software industry in

relation to how software is sourced and developed giving rise

to globally distributed software. However, in the past decade,

the proprietary software industry has also contributed in

stimulating the evolution of open source software as many

OSS products stem from both commercial and community

participants operating in a complex symbiotic ecosystem.

In their Digital Agenda (www.ec.europa.eu), European

commissioners listed 4 reasons for promoting Open Data

initiatives, including potential economic gains from new

product and service development, addressing societal

changes, fostering citizens participation, and improving

internal efficiency. Similar reasons apply in supporting the

Digital Single Marking, Digitising Industry, Open Science and

other initiatives. However, for Open Data to become valuable

Software has become pervasive and increasingly complex. Many
non-software products and services, from healthcare to transport,
education to business, finance to energy, depend on reliable,
high-quality software.

4 | Innovation Potential of Software Technologies

Innovation Potential of Software Technologies | 5

there needs to be an integrated process that supports the

entire data lifecycle management: from raw data collection

and characterization with respect to quality, provenance,

and legal usability, to its publication and accessibility as

information via adequate safe and secure services, to a

rich platform of analysis, aggregation, presentation and

visualization in ways that make it useful for users to interpret

as information.

It is essential that continued software research helps to

raise the practice of software and system development to

a fully–fledged professional discipline (similar to the other

sciences and engineering) rather than the “craft” (reliant on

a limited pool of talented and educated professionals, and

a much larger pool of software development “immigrants”,

with limited training in coding, or even less) that it is today.

Without such a rise in qualification profile and competence

expectations, innovation will be stifled and many industries

currently reliant on software for innovation will fail to meet

their potential

Highest quality and increased productivity are particularly

essential in “high-tech” Europe, where loss of innovation will

mean loss of competitiveness and ultimately economic lost

opportunity.

This migration requires that the Commission
funds research that will:

Develop new models and paradigms to enable the next

generation of software development and higher level

languages adequate for both target tiers: subject matter
experts who participate in the innovation and design, but

do not code, and skilled IT professionals able to create

innovation within the IT systems and their production

lifecycle;

Enable scalable, tool-supported, and efficient, development

methods that address specific domains, industries,

organisations and processes;

Enable active participation by customers in the software

ecosystem and make software development customer-led

(need-”pull” rather than technology “push”), while ensuring

security and privacy of personal information, particularly

in light of Cloud computing technologies, open source

software, open data, and social media and other platforms;

Enable (via tools, technologies, languages, and paradigms)

speedy and cost-effective development of highly-reliable

software, able to express physical, cyber and social design

objectives simultaneously, but that is also able to evolve

without loss of reliability nor prohibitive cost.

EU-funded programmes have resulted in the creation of

a very large amount of software. However, much of this

software does not survive beyond the life of the project

being funded. While releasing such software as open source

was seen as a way of ensuring better longevity and a positive

approach, this licensing per se has little effect without a

development community sufficiently socialized to work

together in the long term towards common goals.

Our recommendation is that to
facilitate innovation, further EU
research investment should emphasize:

»» Investing in open science initiatives, such as

the foundation of non-profit organizations

that can facilitate open access publications.

»» Fostering Open Collaboration and the benefits

that accrue from it.

»» Supporting (and possibly mandating) Open

Data throughout EU-funded research.

Similarly, while there are many topics that are not within

DG CONNECT’s remit, it should continue to support a wide-

ranging software and services research programme, such as

its remit allows. However, while keeping this broad range, it

would be worth emphasizing the criticality of software and

its need to evolve. That is why we recommend a research

programme that emphasizes the area of Evolving Critical

Systems, supporting the development of software-intensive

systems that are reliable and retain their reliability as they

evolve, in support of innovation in European industry,

fostering growth and leading to social inclusion.

Innovation Potential of Software Technologies | 5

6 | Innovation Potential of Software Technologies

Millions of lines of software are used every day in

many diverse areas from Agriculture to Automotive

Systems (including, but not limited to, self-driving cars),

Entertainment to Disaster Recovery, FinTech (Finance) to

Medicine (both research and treatment).

Software is also the major source of innovation and

advancement in a large number of areas that are current

“hot topics”. Topics at or near the peak of inflated

expectations, or above the trough of disillusionment in the

Gartner ICT Hype Report 2014, see Figure 1.

To these we can add topics such as Cyber-Physical Systems

(CPS), where Cyber-based systems (i.e., software) interact

with the physical world by means of various sensors and

actuators. They include wearable devices, medical devices,

and interfaces to social media, implying the growing

importance of so-called Cyber-Physical-Social systems such

as wearable computing, smart-cities, smart-grids, smart-*,

and many other areas in health and communications, all

inherently dependent on large scale and high assurance

software.

In some of these areas, other jurisdictions (such as USA)

are taking the lead. However, there are areas where Europe

can still potentially leap ahead.

There are few areas of modern life in which software is not an
important (though often invisible) component.

1 Introduction

THESE INCLUDE:

»» Internet of Things;

»» Data Science;

»» Big Data;

»» Gamification;

»» Hybrid Cloud
Computing;

»» 3D Printing.

6 | Innovation Potential of Software Technologies

Innovation Potential of Software Technologies | 7

Fig. 1: Gartner ICT “Hype” Chart as at July 2014
(available via: http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp)

2.1 Background

The software in our lives is increasingly

complex; its interaction with the real world

means that its requirements are in a state

of constant change (Lehman & Fernández-

Ramil, 2006; Hinchey and Coyle, 2009). Many

non-software products and services, from

healthcare to transport, education to business,

finance to energy, depend on reliable, high-

quality software.

Software engineering is the discipline that

applies systematic, rigorous engineering

principles to the design and development

of software, much as civil and mechanical

engineering do to the construction of buildings

and machines. Software engineering improves

the quality, reliability and predictability of

software systems by generating knowledge,

methods, tools, and development processes

that both facilitate and improve the product:

software. These qualities are essential

wherever software failure might lead to

significant safety, security, or economic losses.

2 The Software Crisis

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

8 | Innovation Potential of Software Technologies

Change management is a longstanding issue in software

systems: software systems need to be modified in response

to changes in system requirements and in their operational

environment). Such modification may involve the addition

of new functionality, the adjustment of existing functions,

or the wholesale replacement of entire systems. All such

change is fraught with uncertainty: software projects

involving change frequently fail to meet requirements,

run over time and budget, or are abandoned (Rajlich and

Bennett, 2000; Hinchey and Coyle, 2009).

Much of the problems with software projects can

be attributed to poor preparation (requirements

misunderstood or incomplete), poor project management,

insufficient understanding, and insufficient resources.

The Standish CHAOS Report (2015) estimates that 31.1%

of software projects will be cancelled before completion,

and that 52.7% of those that are completed will cost 189%

of their original estimates. The same report indicates that

management believe that more projects fail now than 5 or

10 years ago despite significant advances in a wide range of

technologies (see Figure 2).

Than 5
Years Ago

Than 10
Years Ago

Significantly More Failures 27% 17%

Somewhat More Failures 21% 29%

No Change 11% 23%

Somewhat Fewer Changes 19% 23%

Significantly Fewer Failures 22% 8%

Fig. 2: Project failures compared to 5 and 10 years ago
(Standish CHAOS Report, 2015)

Innovation Potential of Software Technologies | 9

The increasing demand for software is fueled by the

increasing capability of software to perform tasks that were

previously accomplished through some form of hardware.

This is evident in developments such as software-

defined networking (Kirkpatrick, 2013), software defined

infrastructure (Fitzgerald et al., 2015), software defined

data centers (Dell, 2015), right through to the concept

of the software-defined enterprise, which has enough

intelligence to automate all decision-making and business

processes (“Enterprise Physics” – Margaria and Steffen,

2008). Indeed, we are at the point of software-defined*

(where * can refer to networking, infrastructure, data

center, enterprise, etc.).

This is also evident in the move beyond Internet of Things

(IoT) to Systems of Systems where the sensors and sources

of data, such as household-appliances, are fully integrated

into web-enabled systems capable of utilizing machine

learning techniques to offer real-time data analytics on

the morass of acquired raw data, with the ultimate goal

of enabling societal benefits for citizens through the

provision of useful and precisely customized information

– the quantified self, for example. In this era of ‘Big Data’,

Software is becoming the unifier for value creation, even

for companies that sell physical products. The reason why

software is preferred over hardware is due to its ability to

be changed anytime.

It is clear that a massive increase in the volume and

quality of software being produced is required to address

the emerging initiatives named above and many other

innovations. This creates what Fitzgerald (2012) describes

as a Software Crisis 2.0 bottleneck1. The initial software

crisis referred to the basic problems of time, cost and

quality, first identified in 1968: already then, software took

too long to develop, cost more than budgeted, and did not

meet user expectations when eventually delivered. Over

the decades, several initiatives have sought to address this

crisis, e.g., the waterfall life-cycle, the structured approach,

software product lines, software patterns, agile methods,

model-driven development However, none has succeeded

in delivering an order of magnitude increase in software

development productivity. Rather as the well-known and

often cited Standish report2 suggests, software project

failures are quite often the norm. However, it is true to

say that model-driven development, software product

lines, and agile methods, amongst others, are delivering

significant improvements, with widespread industry

1.	 The first Software Crisis was identified at a 1968 NATO conference at which the term “software engineering” was first coined. The phrase is more
commonly associated with a highly-cited article in Scientific American by W.W. Gibbs.

2.	 https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

2.2 Software Crisis 2.0

10 | Innovation Potential of Software Technologies

acceptance, having passed the stage of being exclusively

research topics.

This needs to be examined in the context of advances in

other ICT areas – hardware advances, for example. In the

hardware domain, the well-known Moore’s Law in relation

to integrated circuits is paralleled by other exponential

improvements in data transmission and storage

capacity, as exemplified by Butters’ Law and Kryder’s

Law respectively. In the areas of parallel processing and

multicore computing, however hardware advances require

significant additional technical expertise at the software

level in order to be leveraged successfully.

An interesting distinction has been drawn between “digital

immigrants” – those who began using digital technology at

some stage during their adult lives – and “digital natives”

– those immersed in the world of technology since birth,

developing a natural fluency for technology (Prensky,

2001). By the age of 20, digital natives will have spent

20,000 hours online (Valkenburg and Peter, 2008) and

can cope with, and indeed even welcome, an abundance

of information (Vodanovich et al., 2010). Digital native

consumers represent a significant “pull” factor in seeking to

take advantage of the opportunities afforded by advances

in processing power and increased availability of data. The

advent of wearable computing fuels big data and has led to

initiatives such as life-logging and the quantified-self. With

such initiatives individuals can collect data about all aspects

of their daily lives – diet, health, recreation, mood states,

performance – in some cases recording a terabyte of data

per annum (Gurrin et al., 2014).

How to optimally leverage digital natives as IT and software

producers is however still unclear. What we see is that the

traditional education needs to evolve and accommodate

the changed abilities and aptitudes of the native

generation.

The paradoxical success of the open source software

phenomenon has led to a broader interest in crowd

science or citizen science as a generalizable collaborative

model of problem analysis and solving. Notable areas of

success are user-led innovation, co-creation of value, and

high profile crowdsourcing of solutions for solving complex

R&D problems in organizations such as NASA, Eli Lilly and

Du Pont, which provides real testimony to the potential of

the digital native.

Mass customization has been succinctly defined as

“producing goods and services to meet individual

customer’s needs with near mass production efficiency”

(Tseng & Jiao, 2001). While not a new concept, it resonates

well with catering to the personal needs of the digital

natives. Also, it is now typically delivered through software-

mediated configurability to meet individual customer

needs. The concept of automated personalization is linked

to the desired benefits of big data.

These various “push” and “pull” factors are presented

in Figure 3 below. It is clear that a massive increase in

the volume and quality of software being produced

are required to address these emerging needs and

opportunities. Together, they define a Software Crisis 2.0

bottleneck as illustrated in Fig. 3.

Fig 3.: Software Crisis 2.0

Hardware Advances

Big Data

Software-Defined*

»» Moore’s Law,

Butler’s Law,

Kryder’s Law

»» Parallel computing

»» Cognitive

computing

»» Quantum computer

/ Memcomputer

»» loT »» Systems of Systems

»» SD Networking

»» SD Infrastructure

»» SD Data Center

»» SD Enterprise

Software
Crisis 2.0

»» Crowdsourcing /

crowd-science

»» Quantified self,

Life logging,

Wearable computing

»» Mass customization

Digital Natives

Innovation Potential of Software Technologies | 11

where terabytes of raw data need to be analyzed

to provide useful actionable insights. Here, the

software required for these domains cannot

be “more of the same”: in the face of a bustling

landscape of apps and applications for patients

and professionals alike, most of the designers/

developers do not have a technical background,

and in the larger applications, such as Hospital

Information Systems and similar, silos still

dominate, making integration costly and difficult.

Data is difficult to access, interfaces are complex

and reflect legacy constraints, and most of the

processes and workflows are buried in (often

proprietary) software layers well below the wide

accessibility needed to enforce change. Even if no

major IT paradigm change requires developers to

possess fundamentally new skills and techniques,

service orientation, variant management, flexible

integration, and quick, safe and secure workflow

adaptation require a new generation of software

designers that are comfortable with the high

speed turnaround needed in this experimental

software production. Ensuring that the co-creation

works, with skilled and empowered users that

co-design complex applications, requires a new

generation of descriptive means likely closer to

models than to code, verification means on these

descriptions, with concepts of correctness and

compliance that make sense to such broader

audience as well as to the technology experts – a

new take on knowledge management (Margaria

and Steffen, 2010) much simpler than the

semantic web technology currently available, and

design-development environments that support a

much more gradual and traceable transition from

the “what” to the technical “how” than the model

driven design approaches currently available

(Margaria and Steffen, 2005). In terms of the

software development industry, this challenges

the status quo, and whomever leads the

disruption is likely to shape the next generation of

IT for all of society.

In the overall backdrop to this software bottleneck,

however, it is worth bearing in mind that estimates

suggest the population of professional software

engineers worldwide to comprise no more than

500,000 people (Grier, 2015). Clearly, there are

more software development practitioners in the

world, and development resources may even be

boosted by a general willingness for additional

people to get involved based on a crowdsourcing

model. However, the skills required in this brave

new world are not those possessed by the average

software developer.

The second dimension requires
software development practitioners
to acquire fundamentally different
new skills.

Parallel processing on multicore architectures,

for example, poses a number of fundamental

challenges. The traditional programming

paradigm with run-time task allocation and

scheduling lets the operating system allocate

tasks to processors and take care of scheduling

and load balancing. In a multicore architecture,

these decisions can be made at design-time or

compile-time and developers need to design

program threads accordingly. This is good, as

2.3 New Skill-sets Required for
Software Designers and Developers

There are two dimensions to this crisis. One is the massive increase in the volume and
quality of software required to fuel the demand in new domains where software has not been
always of primary significance – medicine and healthcare for example,

12 | Innovation Potential of Software Technologies

whatever can be checked at design time

(also using formal methods) avoids runtime

issues and bottlenecks. However, analysis,

design, and debugging of parallel systems

are significantly more challenging, and an

optimization/tuning phase is necessary.

While parallelization is successful for specific

platforms and application profiles, it falls

short of general and easy applicability. In the

analysis phase, for example, the question is

what code is worth parallelizing (the easy parts,

like loops, or the frequently executed parts)

and what parallelization is efficiently and safely

feasible, given that hidden dependencies and

race conditions may have horrible side effects.

In the design phase, issues such as methods

of threading and decomposition need to be

addressed. In the validation and verification

phase, handling data races and deadlocks

and implementing thread synchronization

accordingly are in focus. The optimization/

tuning phase considers performance issues

such as the amount of code parallelism, and

whether performance benefits can be achieved

as the number of processors increases.

Figure 4 shows an increase in the size of

software based on a 2009 article (Ebert and

Jones, 2009). While one would expect the

growth in switching systems (with the advent of

software-defined networking, the internet, and

mobile phone technology) and in space flight

control, what is more interesting is the growing

in Automotive embedded software and the

Linux kernel.

Automotive software scarcely existed prior

to the mid-1990s but as is pointed out below

has now grown phenomenally. The growth

in the Linux kernel can be explained by the

participation of thousands of (often amateur)

developers in this popular Open Source

project.

Fig.4: The increasing size of software systems (Jones and Ebert, 2009).

Design lies at the heart of the software innovator of the
future. The emphasis on design may require new skill sets

for the software innovation team—which may include
graphic designers, user experience engineers, cultural

anthropologists, and behavioural psychologists. Designing
engaging solutions requires creative talent; creativity is

also critical in ideation.

Innovation Potential of Software Technologies | 13

The world’s largest bookseller (Amazon), the largest video

service by number of subscribers (Netflix), and the largest

music companies (iTunes, Spotify, Pandora) are all now

effectively software companies (in that they are fully

reliant on software in order to provide their services), and

the traditional companies which they are overtaking are

reverting to becoming software-intensive companies.

Design lies at the heart of the software innovator of the

future. The emphasis on design may require new skill sets

for the software innovation team—which may include

graphic designers, user experience engineers, cultural

anthropologists, and behavioural psychologists. Designing

engaging solutions requires creative talent; creativity

is also critical in ideation—helping to create a vision of

reimagined work, or to develop disruptive technologies

deployed via storyboards, user journeys, wire frames, or

persona maps. Some organizations are already going so

far as to hire science fiction writers to help imagine and

explain moonshot thinking. Figure 5 below shows the STEM

occupations in high demand: 2012–2022 (projected) while

Figure 6 suggests that to enable innovation in the future,

that the conventional, traditional skills associated with

software engineering will need to be augmented by cross

disciplinary skills.

Fig. 5: IT Skills Projections in the USA

Fig. 6 : Cross Disciplining Skills to support innovation

Innovation Potential of Software Technologies | 13

14 | Innovation Potential of Software Technologies

This is how the Vice President for Research of a major

semiconductor manufacturing company, traditionally seen

as the classic hardware company, characterized the context

in which software solutions were replacing hardware in

delivering his company’s products.

This situation is replicated across several business domains

as the transformation to software has been taking place for

quite some time (Fitzgerald, 2016). The telecommunications

industry began the move to softwareization in the 1970s

with the introduction of computerized switches, effectively

inventing Service Oriented Computing in the 1980s with

the Intelligent Network ITU standard. Currently, the

(mobile) telephony market is heavily software-focused,

with successes like Skype and the like that disrupted the

traditional business model and technology stack. The

automotive industry has very noticeably been moving

towards softwareization since the 1960s—today, 80 to

90 per cent of innovations in the automotive industry are

enabled by software (Mossinger, 2010; Swedsoft, 2010).

This is evidenced in the dramatic proportional increase

in the numbers of software engineers employed in the

automotive sector versus those in traditional engineering

roles. As a striking example of the growing importance of

software in the automotive industry, illustrated graphically

in Figure 5, while in 1978, a paper stack printout of the lines

of code in a car would have been about 12 centimetres

high, by 1995 this was already a three-metre high stack,

and by 2005 50 metres tall. By 2013, the printout had

grown to a 150 metres height. The estimate for 2020 is a

staggering 830 metres tall, higher than the Burj Khalifa—

currently the tallest man-made structure in the world

(Schneider, 2015).

This is supported by a report by Siemens (2014),
estimating that software had expanded from about 100
lines of code in the 1970s to as much as 10 million lines.
It points out that “New functions will be integrated not in the

form of control devices, but as software. The third step, finally,

would be a further virtualization of the necessary total system

of hardware and software (the hardware/software stack)

into a service-oriented architecture. The underlying execution

platform composed of control devices and busses, would

entirely virtualized by middleware.” Software middleware
for control devices meanwhile is commercially
available, see e.g. TwinCAT by Beckhoff.

We envisage a similar evolution to occur in a whole
range of industries, most notably in those industries

traditionally associated with the production of physical

goods or devices.

3 Software as an Innovator

 Fig. 7: Height of Software Printout in Mercedes S-Class (Schneider, 2015)

“Our organization has become a software company. The problem is
that our engineers haven’t realized that yet!”

https://www.beckhoff.com/english.asp?twincat/default.htm

Innovation Potential of Software Technologies | 15

3.1 Software Product
and Process Innovation

Managerial drivers

Innovation leadership Innovation evaluation

Shape
Team process drivers

Creativity tools and techniques Creative Cognition Software design
capability

Development framework Teamwork

Involved in

Software process innovation

Infrastructural moderators

Installed base

Knowledge drivers

User involvement Community and network

Knowledge leverage

Inform

Direct

Underpins

Constrain, enable

Software product
and service
innovation

Path dependency

Fig. 8: Software Innovation Drivers

3.	 Rose J., Furneaux B, Drivers and Outputs for Software Firms: Literature Review and Concept Development, Advances in Software Engineering Volume
2A, 2016

Innovation is the implementation of an idea or an

invention which leads to improving and perfecting

a product, a method, a theory or a service with the

sole purpose of accomplishing, at a higher standard,

the objectives they were originally designed for.

Innovation may be the subject of an entire project

or may occur in a certain fraction of a project.

A basic distinction can be made between product

innovations as observed in the development of

a useful new software application and process

innovations such as the introduction of a new

software development methodology3 (see Figure 8).

16 | Innovation Potential of Software Technologies

MANAGERIAL DRIVERS:

Through monitoring, control, and direction setting efforts,

managers influence a wide range of important parameters

that can have significant implications for software

innovation. These parameters include resource allocations,

work environments, strategic goals, and specification of the

initiatives that are included in a project portfolio.

INNOVATION LEADERSHIP:

Innovation leadership has been identified as having a

powerful influence on software innovation in relation to

process innovation with innovation leadership being the

second most prominent driver of software process

INNOVATION EVALUATION:

The ability to evaluate creativity and innovation in

software engineering work is an important precursor to

improvement. Evaluation takes the form of assessing the

work environment, assessing the value of competing ideas

during ideation, assessing new software product concepts,

determining the value of process improvements and

creativity support systems, and determining the value of

the software services currently in use.

KNOWLEDGE DRIVERS:

A second group of drivers are knowledge-oriented

factors that relate to the acquisition and leveraging of

knowledge from internal and external stakeholders and the

relationships that develop as part of these efforts.

KNOWLEDGE LEVERAGE:

Prior work suggests that knowledge plays a central role

in many aspects of software innovation including creative

requirements elicitation and understanding innovation

opportunities.

COMMUNITY AND NETWORK:

Since knowledge creation and use are understood to be

a social process, innovation researchers have tended to

emphasize the importance of communities and networks

to successful innovation.

USER INVOLVEMENT:

Though some innovations are driven by system developers

and designers, research has increasingly stressed the role

of users in software innovation. In particular, customers

can play an important role in the commercialization

of software inventions, assisting with customization,

requirements elicitation, and early investment.

TEAM PROCESS DRIVERS:

Software is usually produced in teams that synthesize the

creative ideas of team members and external knowledge

into code that yields the product/service offerings of

software development organizations.

CREATIVE COGNITION:

Creative cognition research aims to understand the

creative state of mind and the creative acts of individuals,

categorize different innovation styles, develop creative

thinking, and foster creative talent in engineers. The basic

premise is that the creativity of participants in a system

development initiative can contribute significantly to the

level of innovation generated by this initiative.

SOFTWARE DESIGN CAPABILITY:

Design capability encapsulates developer capacity to

integrate customer understanding, market understanding,

and technological advances into novel and useful product

features

TEAMWORK:

Effective teamwork is considered an essential feature of

innovative projects, contributing to team efficiency and

the personal satisfaction of team members. The blend of

experiences and competencies found in the composition of

a team are also of fundamental importance to innovation.

The main drivers / influencers
of each type of innovation have
been identified below:

Innovation Potential of Software Technologies | 17

INNOVATION TOOLS AND TECHNIQUES:

Software innovation is often assumed to benefit from

access to a repertoire of suitable creativity techniques and

support tools as well as situational knowledge of when to

apply them.

DEVELOPMENT FRAMEWORK:

 Development frameworks provide the foundation for

an organization’s approach to software development by

offering support for processes, underlying assumptions,

and work practice norms.

INFRASTRUCTURE MODERATORS:

In addition to the managerial knowledge, infrastructure

determines the fundamental, unavoidable technological

and social conditions in which innovative efforts are

situated. These can include broadband availability and

speed, microprocessor power, customer experience, and

user computer literacy.

INSTALLED BASE:

Since the installed base evolves independent of a developer

group, the timing of innovations can become crucial. If an

innovation is too early, supporting infrastructure such as

communication bandwidth and processing power.may not

be widely available. If it is too late then the innovation has

likely become evident to many competitors.

PATH DEPENDENCY:

Innovations typically grow out of existing software

systems which are, themselves, part of the knowledge

infrastructure. As a result, technological capabilities

engender a form of path dependency that can have

significant implications for the innovations that are

achievable and may require major leadership interventions

to change.

In software development projects, innovation occurs

with an increased frequency. Innovation in software

development is not fundamentally different from other

types of innovations but certain traits set it apart along

several dimensions of the technological and economic

decision space:

A.	 Low Capital Investment Intensity: Innovation in

the software development industry is not bound

to sophisticated research laboratories or the

prerogative of international scientific teams. A good

idea, implemented correctly can be validated by

online communities and quickly spread as a world

acknowledged innovation.

B.	 Continuous User contribution. Users play an

important and sometimes direct role in software

innovation. User feedback is fundamental in any

industry but with software development is very easy

to use it at its full potential. Open source software

encourages users to actively take part in the process

of innovation implementation, but companies benefit

increasingly from having users in the loop also beyond

the open source domain, as software innovation

can also be validated with the use of online user

communities.

C.	 Frequent Releases, updates, patches. Software

products are quickly evolving entities. They rapidly

change during their entire existence thus providing the

perfect environment for continuous innovation to take

place. Some applications are even designed from the

start to be launched progressively, module by module

or in successive individual releases.

Other traits present in any industry are particularly

beneficial to the fast paced and non-physical software

sector.

18 | Innovation Potential of Software Technologies

The companies that in a range of industries are
increasingly using software to deliver innovative,
feature-rich products do so for very good reasons:

A.	 Innovation through software (as opposed to hardware)
costs much less in material investment and stock:
software is non-physical, needing no warehouse nor
shipment as do physical goods.

B.	 Well maintained software, as the name indicates,
is more flexible and changes can be made at a
fraction of the time and cost, keeping the software
“manufacturing” costs at bay.

C.	 Innovations delivered through software allow
organizations to create more product variants at less

cost to pursue new markets and new customers.

This trend is prevalent in many industries, but
particularly in the automotive, aerospace and
defense, industrial, medical device, and electronics
and high tech sectors4:

A.	 Automotive: Automatic, intelligent braking systems
on many high-end vehicles react in a potential crash
situation even if the driver does not. Cars will require
200-300 million lines of software code in the near
future. (Source: Frost & Sullivan)

B.	 Aerospace and Defense: Sensors in unmanned aircraft
gather surveillance data for the US military. The Airbus
A380 uses almost 1000 software components supplied
by more than 40 system and software companies
located on 3 different continents (Source: SITA)

C.	 Medical Devices: Software in implantable pacemakers
monitors cardiac rhythms in heart patients. In the
last 7 years, 500 medical device recalls were related
to software defects and malfunctions (Source: FDA
Survey).

D.	 Electronics and High Tech: From voice-activated texting
to wireless internet access to privacy and security
features — cell phones (and many other electronic
devices) get their intelligence from software. (Source:

Panasonic Corporation)

Speed of production and lines of code are however

in sharp competition with quality and assurance.

Therefore it is of vital importance to not just concentrate

on the code itself and its quantity, but also on the

properties it has, and the assurance levels we can attach

to it in terms of predictability and controllability of its

behavior, especially when it acts in unpredictable and

uncontrollable environments. Non-interference, safety,

security, compliance to norms, standards, regulations, and

guidelines are here of paramount importance. For this,

traditional methods of (still largely manual) validation and

testing are hopeless, because they do not scale.

»» A leading medical device company has reduced
compliance reporting efforts by 99% — from up to 36
person-weeks per FDA regulatory submission to mere
minutes — speeding time-to-market and improving
safety in product engineering. A pioneer in unmanned
aircraft systems (UAS) for intelligence, surveillance,
and reconnaissance was able to move from Capability
Maturity Model Integration (CMMI, a software
engineering process improvement approach designed
to help organizations improve performance) Level 1
(i.e., unpredictable, reactive processes) to Level 3 (i.e.,
proactive processes customized for the organization)
in 11 months by using a single automated solution to
manage all core CMMI processes and artifacts. This
company reached the 500,000 combat flight-hour
milestone faster than any other UAS company.

»» Although these companies represent a range of
industries, sizes, and growth stages, they all share
common elements: they innovate through software
and they all use a single solution to automate product
engineering throughout the product development
lifecycle. They are leaders in their market niche
and they sustain this edge by getting products
to market quickly. These industry leaders have
streamlined the embedded software development
process and automated best practices across the
product development lifecycle. By improving process
efficiencies, these companies are able to focus on their
core business — accelerating innovation and speeding
new products to market -- which translates into larger
market share, increased revenues, and higher profits.

3.2 The Increasing Importance of Software
in Innovation Processes

4.	 “Software: Driving Innovation for Engineered Products”, www.PTC.com

18 | Innovation Potential of Software Technologies

Innovation Potential of Software Technologies | 19

The advent of mobile technoIogy and social

media has had a profound disruptive effort on

retail and travel industries. While, by definition, it

is hard to predict where disruptions may occur,

there is a growing consensus that any sector

that is based on a brokerage model will be

vulnerable to disruption in the short or medium

term5. For example the financial services and real

estate sectors have an enormous potential for

disruption. Software-based transactional systems

have the potential to address the inefficiencies in

the brokerage model. Currently the most topical

examples of this type of software technology are

crypto- currencies and crypto-equities. Software

start-ups are emerging that are developing

technology to allow investment in a company

without ever using traditional money. These

types of software innovation have the potential

to disrupt the global economy and banking

systems. It’s still a nascent phenomenon but

the potential for Internet-scale disruption that

could change the way we transact business is

becoming apparent.

The blockchain6 has the potential to usher in

a new era characterized by global payment

systems, digital assets, decentralized governance,

and even decentralized legal systems. It

enables collective organizations and social

institutions to become more fluid and promote

greater participation, potentially transforming

how corporate governance and democratic

institutions operate. The technology could impact

capital markets, by enabling everyday citizens

to issue financial securities using only a few

lines of code. Beyond these opportunities, the

blockchain has the possibility to fundamentally

change the way people organize their affairs. The

technology can be used to create new software-

based organizations referred to as decentralized

organizations (DOs) and decentralized

autonomous organizations (DAOs). These

organizations can re-implement certain aspects

of traditional corporate governance using

software, enabling parties to obtain the benefits

of formal corporate structures, while at the

same time maintaining the flexibility and scale

of informal online groups. These organizations

also can be operated autonomously, without any

human involvement. They can own, exchange, or

trade resources and interact with other humans

or machines, raising novel questions around

traditional notions of legal personality, individual

agency, and responsibility.

Software developers have quickly realized the

potential for blockchain technology and have

started to use it to create digital currencies,

self-executing smart contracts, as well as

cryptographic tokens that can represent property

or ownership interest in emerging services. It is

also being used to create: censorship-resistant

communications and file sharing systems;

decentralized domain name management

systems (DNS); and fraud-resistant digital voting

platforms.

3.3 Software as an enabler of Future Digital Disruptions

5.	 Digital Transformation Review, Capgemini Consulting, February 2015
6.	 Wright, Aaron and De Filippi, Primavera, Decentralized Blockchain Technology and the Rise of Lex Cryptographia (March 10, 2015).

Available at SSRN: http://ssrn.com/abstract=2580664

20 | Innovation Potential of Software Technologies

A number of domains relevant to software research are

showing promise, some with track-records in various

European research centres and groups, others already

actively being investigated in other jurisdictions.

3.4.1 Financial Services – APIs for Currency
Transactions7

Precursors to modern Service-Oriented Computing, APIs

provide code-level access to systems for programmers to

develop applications on top of existing software without

necessarily understanding the internal details of how

the system in question is implemented. It is sufficient to

know how it works. More importantly, however, service

interfaces and Open APIs – those made available to

external developers – dramatically reduce transaction costs

and help to create innovative third-party applications and

new markets. For example, cryptocurrencies are unique as

they are effectively providing the first set of Open APIs for

money. These APIs may assist in the creation of the sharing

economy through allowing multiple people to co-sign, or

pay for, an item that they wish to share ownership of. For

example, a number of people could combine their keys

to pay for a song or video that they all would co-own and

share.

3.4.2 Smart Agriculture and Food8

Software is being applied in a broad variety of areas

of farming including monitoring and management of

crops and cattle, maintenance of farming equipment,

and mapping of fields and other operational activities

to optimize watering and irrigation, the sowing of seeds,

etc. These solutions are becoming economically viable

due to the reduced cost of tailor-made sensor solutions,

the cheaper cost of storage and processing in cloud

infrastructures and relatively cheap bandwidth (fixed

wireless) that permits the transmission of data sets from

fields across nations and regions.

3.4.3 Media9

The creation of aggregators in the media industry has

produced websites or software systems that pull together

different types of information and content for end users.

These aggregators enable users to create their own

bundles instead of relying on a company to do it for them.

Rich content and user produced content are increasingly

being targeted, with entire stacks of technology for the

cloud (e.g., OpenStack) and for real-time media (e.g.,

WebRTC) increasingly going open source and attracting

interest for industrial exploitation.

3.4.4 Retail10

Many retailers already have a large installed base of

CCTV, or infrared cameras, originally installed to reduce

the likelihood of theft. With the application of back-end

software, however, it is now relatively easy for retailers to

individually track customers as they move and stop around

the store. By applying learning algorithms to collected

data, retailers are able to redesign their store layouts in a

manner that is more appealing to customers and group

different products together to increase the possibility of

sales. RetailNext, for example, has developed software that

uses a store’s existing security cameras to give managers

all kinds of information about how consumers interact with

the store. They can show exactly how many customers

are in a store at a given time, which parts of the store

they explore, which specific items customers spend more

time perusing, and which they do not. They can combine

this information with other variables like staffing levels,

weather, product assortment and placement to determine

their effects on sales. Mont Blanc has used RetailNext’s

services to improve its staffing levels and its product

arrangement within its stores, increasing same-store sales

by 20% in the process.

3.4 Potential Areas of Innovation relevant to Europe

7.	 Industry Transformation – Horizon Scan: ICT & the Future of Financial Services, Ericsson Networked Society Lab
8.	 Industry Transformation – Horizon Scan: ICT & the Future of Agriculture, Ericsson Networked Society Lab
9.	 Industry Transformation – Horizon Scan: ICT & the Future of Media, Ericsson Networked Society Lab
10.	 Industry Transformation – Horizon Scan: ICT & the Future of Retail, Ericsson Networked Society Lab
11.	 Industry Transformation – Horizon Scan: ICT & the Future of Transport, Ericsson Networked Society Lab

Innovation Potential of Software Technologies | 21

Financial Services

EUROPEAN INNOVATION

Transport
Retail
Media

Smart Agriculture

3.4.5 Transport11

End-to-end automated software engineering solutions

help focus software development resources on core

product development and product innovation, leading to

more competitive product lines and accelerated time-to-

market with new features. For companies in a range of

industries, adopting this type of solution has made a huge

impact. One of the world’s leading automotive companies

adopted an automated end-to-end engineering solution

to help manage the volume and velocity of engineering

change driven from software. In this company, 90%

of product changes are software-based. By deploying

a single solution for the entire product development

lifecycle, quality has improved, costly rework had been

eliminated, regulatory reporting has been simplified, and

requirements and change information is easily shared

throughout the organization and with OEM partners. A

leading supplier of in-car location and navigation services

used a single product engineering solution to create an

early warning system that finds and corrects issues before

schedules, quality, or costs are impacted. As a result, the

first time right statistic improved from 80% to 97%. Release

predictability was also improved, providing the ability to

deliver as promised on-time products to customers.

22 | Innovation Potential of Software Technologies

Limited Control

Extensive Control

Third-party
vendors

Community
Open Source

Sponsored
Open Source

Crowdsourcing

OutsourcingInsourcing

Single-vendor
Open Source

Inner-sourcing

Known workforce Unknown workforce

II

IIIIII

II
II

IV
IV

Fig.9: Sourcing Strategies for Software Development
(Stol 2016)(Key: Segments in darker shades signify
areas which are to date quite well understood in
research and practice, while lighter shaded segments
represent areas not yet well understood)

The Open Source Software (OSS) phenomenon has
certainly transformed the traditional proprietary
software industry in relation to how software is sourced
and developed (Fitzgerald, 2006)
giving rise to software ecosystems
such as Google’s Android platform
(and third-party apps) that are
globally widespread.

However, in the past decade, the

proprietary software industry has

also contributed in stimulating the

evolution of open source software

as many OSS products stem from

both commercial and community

participants operating in a complex

symbiotic ecosystem.

Software development increasingly

takes place in organizations and

communities involving many

people. In addition to traditional

approaches such as in-house

software development (insourcing),

there is an increasing trend towards

globalization with a focus on

collaborations with and within communities, which may be

known or anonymous. Open Source Software (OSS) has had

a dramatic impact on the software industry, albeit initially

approached with much scepticism and fear. Today, many

organizations adopt OSS in multiple ways and increasingly

rely on OSS communities for a steady stream of updates

for open source products. Open-

source-inspired strategies such as

crowdsourcing (Stol & Fitzgerald,

2014) and innersourcing (Stol et al.,

2014) are also gaining considerable

attention and are becoming viable

approaches. Figure 6 summarises the

various software sourcing strategies

from a customer’s perspective. We

position these in a circumplex based

on two dimensions: control of the

product offering and the extent to which

a workforce is known.

Quadrant I (Q.I) contains traditional

approaches to software sourcing:

insourcing is in-house software

development with a clearly

defined workforce, and ‘traditional’

outsourcing involves a workforce

initially “unknown” since outsourcing

suppliers are often a black-box for

customers, but given sufficient time

a relationship and trust can develop. In both QI strategies

customers have a considerable degree of control.

3.5 Open Source Software

One of the most
transformative
platforms for

innovation is open
source. The solution to
helping solve problems

in the world not just
technology problems

but social and political
problems can and

should benefit from
open source.

Mark Hinkle, Citrix

Innovation Potential of Software Technologies | 23

Quadrant II (Q.II) contains single-vendor open source,

where one organization owns and controls an OSS product,

as with MySQL and Eclipse, and inner-sourcing, where an

organization adopts OSS development principles for its

internal development. This approach is gaining considerable

interest from companies such as Allstate, PayPal, Rolls-
Royce, Samsung and Sony Mobile (Stol et al., 2014).

Inner source facilitates ad-hoc collaborations between

organizational units that otherwise would not collaborate,

creating a culture of transparency and collaboration.

Because inner source relies on motivated individuals and

self-selection of tasks, an organization has limited control

(by design) over the software

being developed, management’s

role is that of empowerment.

Q.III contains third-party
vendors and community
OSS. The former happens in

software ecosystems whereby

independent parties offer

extensions or new functionality

(Apps). Platform providers have

limited control over the software

developed; excluding offerings

to a platform (e.g., through an

“app store”) is the main way to

exert such control. Such vendors

are necessarily known as they

usually advertise their offerings.

Community OSS refers to

“traditional” open source, that

is, OSS projects without any

formal participation of firms

(or non-profits) that can exert

control over what is being developed. The workforce is

very much unknown since developers are commonly using

pseudonyms and little is known about specific individuals.

The Debian Project (a Linux distribution) is one example

with a strong emphasis on the free/libre philosophy without

corporate involvement (Michlmayr et al., 2015).

Sponsored OSS (Q.IV) is similar to the single-vendor open

source strategy, with the exception that an organization

is merely involved as a co-developing party, and has no

exclusive ownership, and therefore has limited control

over the project as a whole. An example of this strategy is

the Linux kernel—one study suggests that over 80% of all

kernel development is done by paid developers (Corbet et

al., 2013). Crowdsourcing is also inspired by open source

(Stol & Fitzgerald, 2014) with an unknown workforce, at least

up to the point that any post-delivery payments are made

to the “winner” of a crowdsourcing competition—even after

payment, a customer will learn very little about a “supplier.”

In such a case a crowdsourcing organization has a significant

level of control in terms of required features in a delivered

software. Variants are bounty-sourcing, whereby a sponsor

offers a bounty to implement or fix a specific feature in an

OSS project and Internal crowdsourcing

In practice, an organization may face a mix of several

strategies to develop software. For example, the OpenStack

project (offering software for

managing cloud infrastructure),

involving several global companies

such as EMC, HP and Intel,

is a sponsored OSS project

(Gonzalez-Barahona et al., 2013);

together these companies have a

considerable level of (collective)

control over the project, similar to a

single-vendor OSS project.

Most of the research on

collaborative software development

tends to focus on collaborations

within teams, between teams and

among organizations (Mistrik et al.,

2010). In each of these scenarios,

developers are employed, and

are thus known and ‘controllable’

by their respective organizations.

Figure 9 indicates a need to focus on

what we call alternative workforces,

which vary in much more dramatic

ways than the more traditional workforces described above.

Some but not all developers may be paid, developers may

not be aware of each other (e.g., in a competition-based

crowdsourcing setting, but also in open source) and the

motivation and goals of developers may vary widely as well.

Much research in the OSS space focuses on initial

adoption, but the sustainability of these initiatives is

less researched. Key questions are: How can sourcing

strategies be sustained if an organization has little influence

on external workforces? And how can organizations build

up sustainable relationships with unknown workforces?

McKinsey (2013) estimate a
potential annual economic

value of US$3.2 Trillion
to US$5.4 Trillion enabled

by Open Data in seven
domains (education,

transportation, consumer
products, electricity, oil
and gas, health care and

consumer finance), building
emission reductions of 3

billion metric tons, and 35
hours per year of commuter

time saved.

Innovation Potential of Software Technologies | 23

24 | Innovation Potential of Software Technologies

The control dimension raises issues such as: governance

approaches; ownership of innovation and IP; mechanisms

to exert control such as payments; reputation of an actor

in community-based development; conflict control and

resolution; leadership and power-shifts. OSS communities

may suffer from internal disagreements about the future

of a project, and cause “forks” of projects which greatly

affect a project’s sustainability (Gamalielson & Lundell,

2014) because this may split the community of developers,

jeopardizing sustainability. Conflict negotiation has also

been studied by Scacchi and colleagues (Elliott & Scacchi,

2003; Jensen & Scacchi, 2005). Organizations that start

inner source initiatives also adopt the lack of control and

rely on empowerment of an internal workforce to self-

select those tasks that they deem most useful. However,

it is unclear how this “uncontrollable” model of software

development impacts the organization’s product strategies

(driven by market trends and demands).

The extent of to which a workforce is known or

unknown raises issues such as: understanding goals

of workforces, their motivations, beliefs, expectations,

awareness, and norms of the workforce (as a

heterogeneous group, i.e., these issues may vary per

individual) versus those of a customer seeking to

‘source’ software; and the ability to retain knowledge

and intellectual resources. One example of how these

issues can disturb relationships between a ‘customer’ and

‘supplier’ is a misalignment of goals or motivation; OSS

projects may be started by altruistic individuals, not to

offer a fully functional and supported high-quality software

solution. Organizations may have different expectations

and assumptions. In a crowdsourcing scenario, the

fleeting relationship with ‘crowd’ developers is a major

concern from a knowledge management perspective (Stol

& Fitzgerald, 2014). Thus, interacting and collaborating

with an unknown workforce raises significant challenges

for organizations whose aim it is to deliver commercial

software products to a market or their clients.

Open Data is defined as “data that can be freely used,

shared and built on by anyone, anywhere, for any purpose”

(http://okfn.org/).

 In their Digital Agenda (www.ec.europa.eu), European

commissioners listed 4 reasons for promoting Open

Data initiatives, including potential economic gains from

new product and service development (estimated to be

40 billion Euros per year in the EU), addressing societal

changes, fostering citizens participation, and improving

internal efficiency.

Early research on Open Data (and more generally on Public

Sector Information), mainly concerned e-Government

inquiries, addressing aspects of democratic theory,

voter participation, democratic deliberation, and open

government in a broader context. More recent research

explored Open Data as a foundation and catalyser of

innovation (Lakomaa and Kallberg, 2013), and particularly

service innovation. This has led to the introduction and

structure of a new research stream named Open Data

Services and is giving a structure to the investigation of

Open Data as a foundation of service innovation from an

Information Systems perspective.

For Open Data to become valuable there needs to be

an integrated process that supports the entire data

lifecycle management: from raw data collection and

characterization with respect to quality, provenance,

and legal usability, to its publication and accessibility as

information via adequate safe and secure services, to

a rich platform of analysis, aggregation, presentation

and visualization in ways that make it useful for users to

interpret as information.

Scientific Workflows are a direction of research that

addresses the infrastructure, the analysis platforms, the

interoperability, the curation, monitoring, maintenance,

and governance of such (open) Data Services. Initially

dominated by ad-hoc scripting and data-flow approaches

to combinations, it is now evolving towards more mature

platforms that are model driven, allow advanced control

structures and fine grained governance models, support

semantically enhanced integration across heterogeneous

data models, layers and tools, and allow a mature

knowledge management and for “in silico” experimentation

in the life sciences, social sciences, and healthcare.

Prior work funded by DG CONNECT on services can

clearly be used as a foundation for enhancing, exploiting

and popularizing Open Data Services. The unique

issues of Open Data (availability and access, re-use and

redistribution, and universal participation) are likely to

pose particular issues for service composition, security, and

widespread applicability.

3.5.1 Open Data Services

24 | Innovation Potential of Software Technologies

Innovation Potential of Software Technologies | 25

It is evident that further research is needed

that focuses on the development and

maintenance of Evolving Critical Systems (ECS).

With the increasingly blurred line between

hardware and software, at least at design time,

where also hardware components exist in form

of analysable models, this is an area where

Europe can take a lead.

This research must concentrate on the

techniques, methodologies and tools needed

to design, implement, and maintain critical

software systems that evolve successfully

(without risk of failure or loss of quality).

Such research is essential to success and

competitive advantage for the EU in IoT,

Smart-*, Industry 4.0, and all of the domains

and industries identified in Section 1.

In order to understand the challenges of ECS

it is important to consider the complementary

domains of Evolving Systems and Critical

Systems.

Evolving systems12 may

»» have evolved from legacy code and legacy

systems;

»» result from a combination of existing

component-based systems, possibly over

significant periods of time;

»» be the result of the extension of an

existing system to include new functional

requirements;

»» evolve as the result of a need to

improve their quality of service, such as

performance, reliability, usability, or other

quality requirements;

»» evolve as a result of an intentional

change to exploit new technologies and

techniques, e.g., cloud, service-oriented

architectures, or a move towards multi-

core-based implementations;

»» adapt and evolve at run-time in order to

react to changes in the environment or to

meet new requirements or constraints,

such as regulations or the exploitation of

Open Source software initiatives.

Most software systems nowadays are evolving

systems, either large and complex, or simple

(such as apps) that users expect to add

new/modified functionality often, or Open

Source, where contributors can make regular

additions. The alternative to system evolution

is total replacement, often not feasible for cost

and other reasons (Hinchey and Coyle, 2009).

Critical systems are systems where failure

or malfunction will lead to significant negative

consequences (Lyu, 1996). These systems

may have strict requirements for security and

safety, to protect the user or others (Leveson,

1986). Alternatively, these systems may be

critical to the organization’s mission, product

base, profitability or competitive advantage.

For example, an online retailer may be able to

tolerate the unavailability of their warehousing

system for several hours in a day, since most

customers will still receive their orders when

promised. However, unavailability of the

website and ordering system for several hours

may result in the permanent loss of business

to a competitor. Our definition of “critical

system” includes safety-critical and security-
critical systems, but also business-critical and

mission-critical systems.

12.	 Lehman (1980) called these E-type systems.

4 Evolving Critical Systems

26 | Innovation Potential of Software Technologies

ECS can be viewed as a special case of

the broader software and system design

discipline. Similar issues and questions must

be addressed within ECS as in other (non-ECS)

software research, but with the added (and

conflicting) requirements of predictability/

quality and the ability to change.

The IEEE Computer Society’s “Software

Engineering Body of Knowledge” (SWEBOK)

characterises the elements and boundaries

of the software engineering discipline (Abran

et al., 2004) by defining ten Knowledge Areas

(KAs) that are recognised as being core to

the discipline. ECS can be considered from a

similar perspective:

While ECS is related to each of these

Knowledge Areas, a tenth Knowledge Area,

Software Maintenance, is most obviously

relevant. Software Maintenance concerns

the changing of a software system – the

processes and activities concerned with

changing software, as well as specific

techniques undertaken during maintenance,

including program comprehension,

reengineering, and reverse engineering.

4.1 ECS and Software

Innovation Potential of Software Technologies | 27

The problem of how to modify software easily without

losing quality was widely understood and discussed at the

NATO Software Engineering Conference in 1968 (Naur &

Randell,1968). Lehman et al.’s early work on the continuing

change process of the IBM OS360-370 operating systems

and the work that followed from that led to a large body

of research into software evolution and the formulation of

eight “Laws of Evolution” (Lehman & Belady, 1985, Lehman

& Fernández-Ramil 2006). Swanson (1976) identified three

types of evolution:

1.	 corrective maintenance, used to overcome processing

failure, performance failure, and implementation

failure;

2.	 adaptive maintenance, which would overcome change

in data environment (e.g.,restructuring of a database)

and change in processing environment (new hardware,

etc); and

3.	 perfective maintenance, which would improve design,

which might overcome processing inefficiency,

enhance the performance, and the system’s

maintainability.

Rajlich & Bennett’s (2000) staged-life cycle model

highlighted the maturity of a software system as being

an essential consideration when planning change. More

mature software, where many (or all) of the key developers

are no longer in place is seen as being harder to evolve

than newer software supported by its original developers.

As software evolves in terms of functionality, it often

degrades in terms of reliability. While it is normal to

experience failures after deployment and the goal of much

of software maintenance is to remove these failures,

experience has shown that evolution for new functionality

and evolution for maintenance can both result in “spikes”

of failure (cf. Figure 4). Over time, a traditional system

degrades as it evolves and more, rather than fewer, failures

are experienced (Lehman, 1996, Parnas, 1994, Rajlich &

Bennett, 2000).

Dynamic evolution (sometimes called run-time or automatic

evolution) is a special case whereby certain critical systems

may need to change during run-time, e.g., by hot swapping

existing components or by integrating newly developed

components without first stopping the system (Buckley et

al., 2005). This has to be either planned ahead explicitly in

the system or else the underlying platform has to provide

a means to effectuate software changes dynamically. In

terms of the software evolving itself automatically, there

are a number of challenges beyond those faced when a

human drives the process. Ubiquitous computing systems

or autonomic systems are often typified as consisting of

large numbers of distributed autonomic, often resource-

constrained embedded, systems. These types of systems

could be hoped to evolve dynamically but as Baresi

et al. (2006) point out, in these domains open world

assumptions about how a piece of software might be used

are dominant. Designers cannot fully predict how a system

behaves and how it will interconnect with a continuously

changing environment. Therefore open assumptions must

be built in and software must adapt and react to change

dynamically, even if such change is unanticipated.

4.2 Related Work in Software Evolution

Fig. 10: Wear vs Deterioration (Pressman, 1997).

28 | Innovation Potential of Software Technologies

The fundamental questions remain:

1.	 How can we design, implement, and
maintain critical software systems that
A.	 are highly reliable; and
B.	 retain this reliability (or even improve

their reliability) as they evolve without
incurring prohibitive costs?

2.	 How can we maintain critical software
quality when its teams, processes,
methods, and toolkits, are in a state of
constant change?

We believe that the topic of Evolving Critical

Systems is highly relevant. As the ubiquity and

complexity of software increase, a requirement has

emerged for critical software which can successfully

without loss of quality—software that is engineered

from the start to be easily changed, extended

and reconfigured, while retaining its security, its

performance, its reliability and predictability.

4.3 Research Questions

Innovation Potential of Software Technologies | 29

There is a widespread perception that although Europe

is very strong in terms of contributions to leading edge

research and innovation, most of the value from such

knowledge is harvested in the US. This is due in large part

to a circular and self-fulfilling phenomenon in the more

entrepreneurial climate in the US where venture capital,

skilled work-force, and digital-friendly customer markets

are in strong supply. There is also the undeniable fact

that, in Europe as well as globally, companies are taken

more seriously if they have a US address, considered the

epicentre of technology. This in spite of the fact that the

best education in highly competitive areas such as, e.g.,

formal methods is European, as witnessed by the fact that

EU graduates in those disciplines are hired in high numbers

by US companies and research institutions, a systematic

brain-drain. These recommendations intend to leverage

what is unique to the EU, for it to remain an innovative

research space and possibly to increase its competitiveness

also on the exploitation and uptake.

5 Recommendations for the Commission

We may increasingly see our world as a Cyber-Physical-

Social system (or a socio-technical system) whereby the

Cyber world (namely, software) interacts with physical

devices (sensors, actuators, robotics, physical machinery,

medical devices, etc.) and where people share much of the

data/information retrieved (such as received from sports

performance monitoring devices, financial applications,

etc.) with their friends and collaborators (and others they

do not anticipate) via social media and other collaboration

mechanisms.

There is a constant demand for greater functionality, faster

performance, and greater ranges of analytics. The demand

for more complex, large-scale computer systems is growing

exponentially, with many advances in Smart-Cities, Smart-

Grids, Transportation, Entertainment, FinTech, Industry 4.0,

and many more areas highly reliant on software. Software

is also the source of innovation in ubiquitous systems,

cloud technology, mobile devices, smart manufacturing,

and many more domains of application. There is a

significant “push” demand for computing resources, all

of which are enabled (and to some extent limited) by

software.

It is essential that continued software research helps to

raise the practice of software and system development to

a fully–fledged professional discipline (similar to the other

sciences and engineering) rather than the “craft” (reliant on

a limited pool of talented and educated professionals, and

a much larger pool of software development “immigrants”,

with limited training in coding, or even less) that it is today.

Without such a rise in qualification profile and competence

expectations, innovation will be stifled and many industries

currently reliant on software for innovation will fail to meet

their potential. The larger, more conceptually demanding,

and more connected become the software products,

the less they are amenable to the coding first, trial and

error-based development approach widely practiced

today by decision makers and a programmer workforce

that underestimate alike the importance and impact of

both high quality and speed. Top quality and increased

productivity are particularly essential in “high-tech” Europe,

where loss of innovation will mean loss of competitiveness

and ultimately economic lost opportunity.

This migration requires that the Commission funds

research applying in domains important to initiatives

5.1 Context

Innovation Potential of Software Technologies | 29

30 | Innovation Potential of Software Technologies

13.	 http://www.nsf.gov/pubs/2010/nsf10015/nsf10015.jsp
14.	 http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489&org=ACI&from=home
15.	 http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504776&org=ACI&from=home

such as Digital Single Market, Digitising

Industry and Open Science, with relevance in

cyberphysical systems, FinTech, Industry 4.0,

Internet of Things and many other domains.

Such research must support:

»» Developing new models and

paradigms to enable the next

generation of software development

and higher level languages adequate

for both target tiers: subject matter
experts who participate in the

innovation and design, but do not

code, and skilled IT professionals

able to create innovation within the

IT systems and their production

lifecycle;

»» Enabling scalable, tool-supported,

and efficient, development methods

that address specific domains,

industries, organisations and

processes (as above);

»» Enabling active participation by

customers in the software ecosystem

and making software development

customer-led (need-”pull” rather than

technology “push”), while ensuring

security and privacy of personal

information, particularly in light of

Cloud computing technologies, open

source software, open data, and

social media and other platforms;

»» Enabling (via tools, technologies,

languages, and paradigms) speedy

and cost-effective development

of highly-reliable software, able to

express physical, cyber and social

design objectives simultaneously,

but that is also able to evolve without

loss of reliability nor prohibitive cost.

The US approach to research funding by

the NSF is instructive. Open source process

research can still be funded in research

proposals generally across the program.

However, the NSF have declared higher level

research objectives in which the open source

paradigm is a key facilitator. This is evident

in their definition of Cyberinfrastructure
Framework for 21st Century Science
and Engineering (CF21)13. The latter

recognises the fundamental changes being

brought about in all disciplines of science

and engineering by cyberinfrastructure.

The open-* model is seen as a key

component in this, with specific programs

to fund software research; for example,
Software Infrastructure for Sustained
Innovation (SI2)14 and Data Infrastructure
Building Blocks (DIBBs)15

5.1.2 International Experience

5.1.1 Commission Support

30 | Innovation Potential of Software Technologies

Innovation Potential of Software Technologies | 31

There is little point in EU initiatives that seek to mirror US

ones – rather, a more holistic big-picture approach is likely

to deliver more benefit. This requires that one take the

open source software (OSS) success as a given and seek

to leverage the open-* paradigm that it underpins and to

which it serves as a proof of concept.

EU-funded programmes have resulted in the creation of

a very large amount of software. However, much of this

software does not survive beyond the life of the project

being funded. While releasing such software as open source

was seen as a way of ensuring better longevity and a positive

approach, see (Aigrain, 2005), however this licensing per

se has little effect without a development community

sufficiently socialized to work together in the long term

towards common goals. Contrary to the early days,

commercial companies now increasingly understand, trust,

and embrace both open source software and the business

models that allow it to be included in their software stack.

Commercial software providers are now providing a major

boost to open source software. However, as too often

seen, IPR issues in these proposals are often at odds with

open source releaseability. Also, sustainability is linked to

the contributor community’s creation, organization, and its

resourcing, all these rarely available in or after EU projects.

In the big picture, specific cultural benefits that arise

through the open source paradigm are more important

than the software release, for example greater innovation

through the variety of broad and deep knowledge within a

vibrant open source community, or an accelerated learning

curve for new developers by the transparency of open

source code.

Higher level strategies that go beyond the open source

software phenomenon per se and seek instead to leverage

what is afforded by the open paradigm are thus more likely

to deliver in the longer term.

5.2 Recommendation regarding Open-*

5.2.1 Status Quo

32 | Innovation Potential of Software Technologies

A prior proposal for an Open Source
Innovation Platform in Work Programme
2016-2017 aimed to provide a common
repository with mechanism to ensure
software quality and support re-use, and
innovation actions to transform initial
open source solutions into commercially
viable applications, build communities,
and promote reuse of code by new
projects.

One of the main recommendations of
that report was that “Europe should
encourage the emergence of open
source software repositories associated
with development or qualification
tools to gather and foster the result of
cooperative R&D or local initiatives”.

The proposal argued that OSS emerging
from research projects are “rarely
properly validated and documented,
which means that the scope for re-use
is usually lost at the end of the funding
period.” We argue that this view is
somewhat dated and the situation has
changed over the years.

The proposal also argues that the
solution (an Open Source Innovation
Platform) is a vendor-neutral OSS
Innovation Platform for European
software developers, in particular for

OSS developed using H2020 support.
We argue, however, that the software
market is global and software
development is a global activity. As such,
creating EU-specific innovations may not
be any guarantee of success.

 Moreover, there is the issue of how
to convince successful OSS project to
migrate to the new platform. The effort
to migrate between services is significant
with no clear benefit. In particular, there
is no “killer feature” that would enthuse
projects to move. Perhaps offering some
additional support (free Cloud CPU and
storage, etc.) may help in convincing.

The tools proposed as part of the
innovation are not well defined and seem
very generic, again giving projects little
reason to migrate.

Vendor neutrality might be seen as a
benefit, as all other existing platforms
are backed by some company. However,
there needs to be a compelling advantage
for choosing a new infrastructure, when
Github has established such a strong
presence globally and offers significant
advantages over, for example AppHub
(www.apphub.eu.com), an EU-funded
marketplace.

The proposal cites the ISTAG report “Toward a Strategic
Agenda for Software Technologies in Europe” as
indicating that such an initiative was needed.

32 | Innovation Potential of Software Technologies

http://www.apphub.eu.com

Innovation Potential of Software Technologies | 33

16.	 http://www.datafactories.org/
17.	 http://www.oshwa.org/
18.	 https://www.arduino.cc/

The true power of open source arises in the affordances

that the open paradigm leads to, what we label here as

the open-* (open star) paradigm. At the highest level, we

could position Open Science. Here we are interested

in harnessing the power of open to solve intractable

problems. Crowdsourcing and citizen science occur here.

However, this should go farther and incorporate the idea

of open research results. An interesting initiative here is

the US project Open Data Factory16 which seeks to create

metadata standards and infrastructure to aid in the

description, discovery, and sharing of large datasets from

all kinds of sources, both research projects and commercial

and public sector initiatives.

This leads naturally to the open data concept. It is now

commonplace for municipalities and public institutions

to make data open, but until that data is transformed

into information which is useful and readily accessible to

the average citizen, it provides little value to the public.

Software ecosystems such as Google’s Android platform,

and third-party apps are widespread. In the Smart Cities

space, many cities have released a variety of data-sets

under an open data model allowing citizens to freely

develop civic apps. However, such initiatives have not

delivered to the extent expected. Significant initial barriers

arose in the lack of appropriate governance models

for how data should be made available, how benefits

could be realized and what impact and value capture

can be achieved. Further problems arise in relation to

standardisation of data formats and APIs, application

discovery and diffusion, efficient reuse, and a tension

between collaboration and competition.

Creativity and motivation are required for this

transformation. The EU could foster an environment where

people are encouraged to create applications which link

open data sets by providing sponsorship for hackathon/

maker events. In such an event, curators of open data sets

would be brought together with students. The curators

would be available to describe their data and answer

questions about the interface, while the students would

be invited to form teams and build prototype applications,

with the most innovative and useful ideas being awarded

prize money. PegelAlarm (pegelalarm.de) is an example

of an application which links multiple open data sources-

-information about river flow levels from municipalities

across Germany--to provide value in the form of an

application which shows and predicts river flows along the

length of the river. There are many organizations, such as

Mozilla (mozilla.org) which are already organizing events to

encourage hands-on involvement in creating applications

which would probably be willing to promote and organize

events around the open data theme if they were given

funding.

Another open-* initiative is open source hardware
(Pearse, 2012; Thompson, 2008). Open source hardware

is an electronic hardware design that is publicly available

under an open source license. These documents might

include schematics and manufacturing steps. There are

various associations that certify the completeness and

correctness of the hardware design documents17.

Two main benefits of open source hardware design are the

following:

»» Easy customization: The transparency of the design

makes the customization of the hardware more

straightforward. Many devices for different needs

can be developed on top of a single open hardware

platform such as Arduino18.

»» Security: Some of the security threats in computer

systems are related to the faults in the hardware

design. Transparency in design would allow a large

community remove the security concerns, similar to

open source software.

Reproducing hardware from design documents is getting

easier and cheaper for individuals and small companies

with the increased popularity of 3D printers and other low

cost manufacturing tools. In addition, DIY (Do-It-Yourself)

approaches by consumers contributes to the popularity

of open source hardware. Some might argue that open

source hardware would remove the competitive advantage

of a company. Companies who are in this market depend

on selling their experience as an inventor or keeping ahead

5.2.2 Open-*

34 | Innovation Potential of Software Technologies

It is our recommendation to DG CONNECT that is must

continue to recognize the broad relevance of software,

and its interdisciplinary nature, in a whole range of

industries and domains and its importance to innovation

therein throughout the European Union. It is not sufficient

to allow each industry sector, nor each member state,

to set its own research agenda, as this will result in

duplication of effort and inefficiencies, leaving Europe in a

weaker position vis-à-vis the rest of the world.

The US also takes this view. While the NSF will prioritize

particular research areas with revisions to its programme

every few years, it is committed to ensuring support and

funding for more fundamental research in a broader

sense. Similarly, while there are many topics that are

not within DG CONNECT’s remit, it should continue to

support a wide-ranging software and services research

programme, such as its remit allows. However, while

keeping this broad range, it would be worth emphasizing

the criticality of software and its need to evolve. That is why

we recommend a research programme that emphasizes

the area of Evolving Critical Systems, supporting the

development of software-intensive systems that are

reliable and retain their reliability as they evolve, in support

of innovation in European industry, fostering growth and

leading to social inclusion.

5.3 Final Recommendations

of the competing copycat products in quality. However, the

effect of this business model on profitability needs to be

researched further.

Open source design documents help the teaching process

and help knowledge sharing by researchers in different

domains. The research findings obtained by custom

hardware might be hard to reproduce by independent

researchers. Research findings linked to open source

hardware and software will make reproducing results

much more easy.

Some of the most successful open source hardware

companies are based in the EU. Research funding in

this domain could allow Europe establish a competitive

advantage in this area. Investigation of successful

applications of open source methodologies in hardware

design would help in reaching this goal.

The above analysis has led us to the following

recommendations for further research funding by the EU:

»» Open science. Invest in open science initiatives,

such as the foundation of non-profit organizations

that can facilitate open access publications; whereas

all EU funded research must be published in open

access journals, this does not solve the problem of

commercial publishers extracting a significant amount

of funding from the research ecosystem—this funding

would be better spent on research rather than

paying for commercial open access licenses for the

publications. Furthermore encouraging researchers

to share their research data and instrumentation

through freely accessible platforms can help to foster

collaborations and reduce duplication of effort.

»» Open collaboration. Whereas most attention

is focused on open source as the product, open

collaboration is a topic that is only now attracting

considerable attention from industry. Trends such as

innersourcing and crowdsourcing, whereby companies

have limited control over the product offerings

and workforces that produce those offerings are

transforming the software sourcing landscape. The

nature of software development is inherently changing

towards an open model – and understanding how to

foster this is very important to inform future policy.

»» Open data. Third parties can build very useful tools

using public or government data. Unfortunately, such

data is usually stored in different platforms without

a common API. Government and public data can be

stored in a common repository and a common API.

USA open data website https://www.data.gov/ is an

example of this approach. Version control and curation

of these data sources would need a straightforward

but comprehensive contribution and review process

and policy. Third party vendors which use such

data would help to build innovative products for EU

countries.

https://www.data.gov/

Innovation Potential of Software Technologies | 35

A. Abran, J. W. Moore, P.
Bourque, and R. Dupuis,
editors. Guide to the Software
Engineering Body of Knowledge
(SWEBOK). IEEE Computer
Society, 2004.

P. Aigrain, Libre Software
Policies at the European
Level, in Feller, J, Fitzgerald, B,
Hissam, S, and Lakhani, K. (Eds)
Perspectives on Free and Open
Source Software, MIT Press,
Cambridge, MA. pp. 447-459,
2005.

L. Baresi, E. D. Nitto, and C.
Ghezzi. Towards open-world
software: Issue and challenges.
In Software Engineering
Workshop, 2006. SEW ’06. 30th
Annual IEEE/NASA, pp. 249–252,
April 2006.

J. Buckley, T. Mens, M. Zenger,
A. Rashid, and G. Kniesel.
Towards a taxonomy of
software change: Research
articles. J. Softw. Maint. Evol.,
17(5):309–332, 2005. ISSN 1532-
060X.

J. Corbet, G. Kroah-Hartman
and A. McPherson, Linux Kernel
Development: How Fast It is
Going, Who is Doing It, What They
are Doing, and Who is Sponsoring
It, 2013.

M.L. Despa, The Adaptive
Nature Of Managing
Software Innovation, Journal
of Information Systems &
Operations Management 7
(1):184-191S.

S. Dobson, A. Denazis, D.
Fernández, E. Gaïti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre,
N. Schmidt, and F. Zambonelli.
A survey of autonomic
communications. ACM Trans.
Auton.Adapt. Syst., 1(2):223–
259, 2006. ISSN 1556-4665.

B. Fitzgerald, The
Transformation of Open Source
Software. MIS Quarterly 30(3),
2006.

B. Fitzgerald, Software Crisis
2.0, IEEE Computer, 45(4), April
2012

J. Gamalielsson and B. Lundell,
Sustainability of Open Source
software communities beyond
a fork: How and why has the
LibreOffice project evolved? J
Sys Soft 89, 128-145, 2014.

J.M. Gonzalez-Barahona et al,
Understanding How Companies

Interact with Free Software
Communities, IEEE Software
30(5), 2013.

D. Grier, Do We Engineer
Software in Software
Engineering, 2015, https://
www.youtube.com/
watch?v=PZcUCZhqpus

A. Gurrin, A. Smeaton and
A. Doherty, LifeLogging:
Personal Big Data, 2014, DOI:
10.1561/1500000033.

M. Hinchey and L. Coyle,
Evolving Critical Systems,
Lero Technical Report Lero-
TR-2009-00, Lero-the Irish
Software Engineering Research
Centre, 2009.

K. Kirkpatrick, Software-Defined
Networking, Communications of
the ACM, 56(9):16-19, 2013.

E. Lakomaa, J. Kallberg, Open
Data as a Foundation for
Innovation-The Enabling
Effect of Free Public Sector
Information for Entrepreneurs,
IEEE Access, 1-1, 2013

M. Lehman. Programs, life
cycles, and laws of software
evolution. Proceedings of the
IEEE, 68(9):1060–1076, Sept.
1980. ISSN 0018-9219.

M. M. Lehman. Laws of
software evolution revisited.
In EWSPT ’96: Proceedings of
the 5th European Workshop on
Software Process Technology,
pages 108–124, London, UK,
1996.Springer-Verlag. ISBN
3-540-61771-X.

M. M. Lehman and L. A. Belady,
editors. Program evolution:
processes of software change.
Academic Press Professional,
Inc., San Diego, CA, USA, 1985.
ISBN 0-12-442440-6.

M. M. Lehman and J. C.
Fernández-Ramil. Software
Evolution and Feedback: Theory
and Practice, chapter Software
Evolution. John Wiley & Sons,
2006. ISBN 0470871806.

N. G. Leveson. Software safety:
why, what, and how. ACM
Comput. Surv., 18(2):125–163,
1986. ISSN 0360-0300.

M. R. Lyu, editor. Handbook of
software reliability and system
reliability. McGraw-Hill, Inc.
Hightstown, NJ, USA, 1996. ISBN
0-07-039400-8.

T. Margaria and B. Steffen.
From the How to the What. In
“Verified Software: Theories,
Tools, Experiments”,1st IFIP TC
2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland,
pp.448-459, LNCS 4171,
Springer Verlag.

T. Margaria and B. Steffen. An
Enterprise Physics Approach
for Evolution Support in
Heterogeneous Service-
Oriented Landscapes. In
3gERP Workshop 2008, DIKU,
Copenhagen, Denmark,
November 2008, www.
diku.dk/~henglein/3gERP-
workshop-2008/papers/
margaria-steffen.pdf

T. Margaria and B. Steffen.
Simplicity as a Driver for Agile
Innovation. Computer, 43(6):
90-92,

June 2010, DOI Bookmark:
http://doi.ieeecomputersociety.
org/10.1109/MC.2010.177

I. Mistrik, J. Grundy, A. van
der Hoek and J. Whitehead
(Eds.), Collaborative Software
Engineering, Springer, New York,
pp. 307-328, 2010.

P. Naur and B. Randell, editors.
Software Engineering: Report
of a conference sponsored by
the NATO Science Committee,
Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs
Division, NATO, 1968.

D. L. Parnas. Software
aging. In ICSE ’94: Proc. 16th
international conference on
Software engineering, pp.279–
287, Los Alamitos, CA (USA),
1994. IEEE Computer Society
Press. ISBN 0-8186-5855-X.

J.M. Pearce, Building research
equipment with free, open-
source hardware. Science
337.6100 pp 1303-1304, 2012.

M. Prensky,. Digital game-based
learning. New York: McGraw-
Hill, 2001.

R. S. Pressman. Software
Engineering: A Practitioner’s
Approach, 4 ed. McGraw-Hill,
1997.

V. Rajlich and K. H. Bennett. A
staged model for the software
life cycle. Computerm 33(7):66–
71, 2000.

K. Stol et al., Key Factors for
Adopting Inner Source. ACM

TOSEM 23(2), 2014.

K. Stol, B. Fitzgerald, Two’s
Company, Three’s a Crowd: A
Case Study of Crowdsourcing
Software Development. Proc.
ICSE’14, Hyderabad, India, 2014.

K. Stol and B. Fitzgerald, Why
and How Open Source Projects
should adopt Time-Based
Releases. IEEE Software 32(2),
2015.

K. Stol, Managing Software
Sourcing with Alternative
Workforces: A Holistic Overview
and Research Agenda, Lero
Technical Report, 2016.

E. B. Swanson. The dimensions
of maintenance. In ICSE
’76: Proceedings of the 2nd
International Conference on
Software Engineering, pages
492–497, Los Alamitos, CA, USA,
1976. IEEE Computer Society
Press.

J. Teixeira, Understanding
Competition in the Open
Source Arenda: The Cases
of WebKit and OpenStack. In
Proceedings of OpenSym’14,
Berlin, Germany, 2014.

C. Thompson, Build it. Share
it. Profit. Can open source
hardware work?. Wired, 2008.

P.M. Valkenburg and J.
Peter, Adolescents’ identity
experiments on the Internet:
Consequences for social
competence and self concept
unity. Comm. Res. 35(2): 208-
231, 2008.

D. Vodanovich, D. Sundaram,
and M. Myers, Digital natives
and ubiquitous information
systems, Information Systems
Research, 21 (4), pp. 711-723,
2010.

J. Yan and X. Wang, From Open
Source to Commercial Software
Development. In Proceedings
of International Conference on
Information Systems, ICIS 2013.

1

Chair of Service and Software
Engineering, Universtät
Potsdam, Germany, margaria@
cs.uni-potsdam.de

Chair of Programming Systems,
TU Dortmund, Germany,
steffen@cs.tu-dortmund.de M.
Michlmayr, B. Fitzgerald and K.

6 References

https://www.youtube.com/watch?v=PZcUCZhqpus
https://www.youtube.com/watch?v=PZcUCZhqpus
https://www.youtube.com/watch?v=PZcUCZhqpus
http://www.diku.dk/~henglein/3gERP-workshop-2008/papers/margaria-steffen.pdf
http://www.diku.dk/~henglein/3gERP-workshop-2008/papers/margaria-steffen.pdf
http://www.diku.dk/~henglein/3gERP-workshop-2008/papers/margaria-steffen.pdf
http://www.diku.dk/~henglein/3gERP-workshop-2008/papers/margaria-steffen.pdf
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Tiziana+Margaria
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Bernhard+Steffen
http://doi.ieeecomputersociety.org/10.1109/MC.2010.177
http://doi.ieeecomputersociety.org/10.1109/MC.2010.177

